Cargando…
Synthetic utility of oxygenases in site-selective terpenoid functionalization
Terpenoids are one of the largest classes of natural products whose members possess a wide variety of biological activities. With several exceptions, scalable production of complex terpenoids with either purely biological or chemical methods still remains a major challenge. However, recent efforts t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8180501/ https://www.ncbi.nlm.nih.gov/pubmed/33928356 http://dx.doi.org/10.1093/jimb/kuab002 |
Sumario: | Terpenoids are one of the largest classes of natural products whose members possess a wide variety of biological activities. With several exceptions, scalable production of complex terpenoids with either purely biological or chemical methods still remains a major challenge. However, recent efforts to combine the two approaches in chemoenzymatic synthesis hold tremendous promise to address this challenge. Central to this paradigm is the development of useful biocatalytic methods, such as regioselective C–H oxidation, for terpene modifications. This review highlights recent applications of biocatalytic hydroxylation for site-selective modification of terpenoids. |
---|