Cargando…
Identification of Arrhythmia by Using a Decision Tree and Gated Network Fusion Model
In recent years, deep learning (DNN) based methods have made leapfrogging level breakthroughs in detecting cardiac arrhythmias as the cost effectiveness of arithmetic power, and data size has broken through the tipping point. However, the inability of these methods to provide a basis for modeling de...
Autores principales: | Lu, Peng, Zhang, Yabin, Zhou, Bing, Zhang, Hongpo, Chen, Liwei, Lin, Yusong, Mao, Xiaobo, Gao, Yang, Xi, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8181111/ https://www.ncbi.nlm.nih.gov/pubmed/34194537 http://dx.doi.org/10.1155/2021/6665357 |
Ejemplares similares
-
KecNet: A Light Neural Network for Arrhythmia Classification Based on Knowledge Reinforcement
por: Lu, Peng, et al.
Publicado: (2021) -
A New Multichannel Parallel Network Framework for the Special Structure of Multilead ECG
por: Lu, Peng, et al.
Publicado: (2020) -
An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset
por: Gao, Junli, et al.
Publicado: (2019) -
ECG-based prediction algorithm for imminent malignant ventricular arrhythmias using decision tree
por: Mandala, Satria, et al.
Publicado: (2020) -
A life-threatening arrhythmia detection method based on pulse rate variability analysis and decision tree
por: Chou, Lijuan, et al.
Publicado: (2022)