Cargando…

Adaptive Cognitive Mechanisms to Maintain Calibrated Trust and Reliance in Automation

Trust calibration for a human–machine team is the process by which a human adjusts their expectations of the automation’s reliability and trustworthiness; adaptive support for trust calibration is needed to engender appropriate reliance on automation. Herein, we leverage an instance-based learning A...

Descripción completa

Detalles Bibliográficos
Autores principales: Lebiere, Christian, Blaha, Leslie M., Fallon, Corey K., Jefferson, Brett
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8181412/
https://www.ncbi.nlm.nih.gov/pubmed/34109222
http://dx.doi.org/10.3389/frobt.2021.652776
Descripción
Sumario:Trust calibration for a human–machine team is the process by which a human adjusts their expectations of the automation’s reliability and trustworthiness; adaptive support for trust calibration is needed to engender appropriate reliance on automation. Herein, we leverage an instance-based learning ACT-R cognitive model of decisions to obtain and rely on an automated assistant for visual search in a UAV interface. This cognitive model matches well with the human predictive power statistics measuring reliance decisions; we obtain from the model an internal estimate of automation reliability that mirrors human subjective ratings. The model is able to predict the effect of various potential disruptions, such as environmental changes or particular classes of adversarial intrusions on human trust in automation. Finally, we consider the use of model predictions to improve automation transparency that account for human cognitive biases in order to optimize the bidirectional interaction between human and machine through supporting trust calibration. The implications of our findings for the design of reliable and trustworthy automation are discussed.