Cargando…
Deep Cross-User Models Reduce the Training Burden in Myoelectric Control
The effort, focus, and time to collect data and train EMG pattern recognition systems is one of the largest barriers to their widespread adoption in commercial applications. In addition to multiple repetitions of motions, including exemplars of confounding factors during the training protocol has be...
Autores principales: | Campbell, Evan, Phinyomark, Angkoon, Scheme, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8181426/ https://www.ncbi.nlm.nih.gov/pubmed/34108858 http://dx.doi.org/10.3389/fnins.2021.657958 |
Ejemplares similares
-
Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity
por: Campbell, Evan, et al.
Publicado: (2020) -
Interpreting Deep Learning Features for Myoelectric Control: A Comparison With Handcrafted Features
por: Côté-Allard, Ulysse, et al.
Publicado: (2020) -
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors
por: Phinyomark, Angkoon, et al.
Publicado: (2018) -
Feature Extraction and Selection for Pain Recognition Using Peripheral Physiological Signals
por: Campbell, Evan, et al.
Publicado: (2019) -
Fractal Analysis of Human Gait Variability via Stride Interval Time Series
por: Phinyomark, Angkoon, et al.
Publicado: (2020)