Cargando…

A nematode-derived, mitochondrial stress signaling-regulated peptide exhibits broad antibacterial activity

A dramatic rise of infections with antibiotic-resistant bacterial pathogens continues to challenge the healthcare field due to the lack of effective treatment regimes. As such, there is an urgent need to develop new antimicrobial agents that can combat these multidrug-resistant superbugs. Mitochondr...

Descripción completa

Detalles Bibliográficos
Autores principales: Sapkota, Madhab, Adnan Qureshi, Mohammed, Arif Mahmud, Siraje, Balikosa, Yves, Nguyen, Charlton, Boll, Joseph M., Pellegrino, Mark W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8181894/
https://www.ncbi.nlm.nih.gov/pubmed/34184732
http://dx.doi.org/10.1242/bio.058613
Descripción
Sumario:A dramatic rise of infections with antibiotic-resistant bacterial pathogens continues to challenge the healthcare field due to the lack of effective treatment regimes. As such, there is an urgent need to develop new antimicrobial agents that can combat these multidrug-resistant superbugs. Mitochondria are central regulators of metabolism and other cellular functions, including the regulation of innate immunity pathways involved in the defense against infection. The mitochondrial unfolded protein response (UPR(mt)) is a stress-activated pathway that mitigates mitochondrial dysfunction through the regulation of genes that promote recovery of the organelle. In the model organism Caenorhabditis elegans, the UPR(mt) also mediates an antibacterial defense program that combats pathogen infection, which promotes host survival. We sought to identify and characterize antimicrobial effectors that are regulated during the UPR(mt). From our search, we discovered that the antimicrobial peptide CNC-4 is upregulated during this stress response. CNC-4 belongs to the caenacin family of antimicrobial peptides, which are predominantly found in nematodes and are known to have anti-fungal properties. Here, we find that CNC-4 also possesses potent antimicrobial activity against a spectrum of bacterial species and report on its characterization.