Cargando…
RNA Binding Protein-Based Model for Prognostic Prediction of Colorectal Cancer
BACKGROUND: Colorectal cancer (CRC) is a kind of gastrointestinal tumor with serious high morbidity and mortality. Several reports have implicated the disorder of RNA-binding proteins (RBPs) in plenty of tumors, associating it to tumorigenesis and disease progression. The study is intended to constr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182183/ https://www.ncbi.nlm.nih.gov/pubmed/34080453 http://dx.doi.org/10.1177/15330338211019504 |
Sumario: | BACKGROUND: Colorectal cancer (CRC) is a kind of gastrointestinal tumor with serious high morbidity and mortality. Several reports have implicated the disorder of RNA-binding proteins (RBPs) in plenty of tumors, associating it to tumorigenesis and disease progression. The study is intended to construct novel prognostic biomarkers associated with CRC patients. METHODS: Data of gene expression was acquired from the TCGA database, prognosis-related genes were selected. Besides, we analyzed GO and KEGG pathways. Univariate and multivariate Cox analyses were performed to generate a prognostic-related gene signature, which was evaluated by the Kaplan-Meier (K-M) and the Receiver Operating Characteristic (ROC) curve. The independent prognostic factor was established by survival analysis. GSE38832 dataset was used to validate the signature. Finally, expression of 8 genes was further confirmed by qRT-PCR in SW480 and SW620 cell lines. RESULTS: We obtained 224 differentially expressed RBPS in total, of which 78 were downregulated and 146 were upregulated. Univariate COX analysis was conducted in the TCGA cohort to select 13 RBPs with P < 0.005, stepwise multivariate COX regression analysis was used to construct an 8—RBP signature (TERT, PPARGC1A, BRCA1, CELF4, TDRD7, LUZP4, PNLDC1, ZC3H12C). Based on the model, systematic analysis illustrated that a high risk score was obviously connected to a poor prognosis. The prognostic value of the risk score was validated in GSE38832 dataset, indicating that the risk model was accurate and effective. The prognostic signature-based risk score was identified as an independent prognostic indicator for CRC. The expression results of qRT-PCR were consistent with the results of differential expression analysis. CONCLUSIONS: The eight-RBP signature can predict the survival of CRC patients and potentially act as CRC prognostic biomarker. |
---|