Cargando…

Dose-Dependent Effect of Polystyrene Microplastics on the Testicular Tissues of the Male Sprague Dawley Rats

Due to the continuous increase in polystyrene microplastics (PS MPs) incorporation in the environment, growing number of adverse effects on living organisms and ecosystem have become a global concern. Therefore, current study was planned to elucidate the impacts of 5 different concentrations control...

Descripción completa

Detalles Bibliográficos
Autores principales: Ijaz, Muhammad Umar, Shahzadi, Sabahat, Samad, Abdul, Ehsan, Nazia, Ahmed, Hussain, Tahir, Arfa, Rehman, Humaira, Anwar, Haseeb
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182192/
https://www.ncbi.nlm.nih.gov/pubmed/34158809
http://dx.doi.org/10.1177/15593258211019882
Descripción
Sumario:Due to the continuous increase in polystyrene microplastics (PS MPs) incorporation in the environment, growing number of adverse effects on living organisms and ecosystem have become a global concern. Therefore, current study was planned to elucidate the impacts of 5 different concentrations control, 2, 20, 200, and 2000 μgL(-1) of PS MPs on testicular tissues of rats. PS MPs significantly reduced the activities of antioxidant enzymes (catalase, superoxide dismutase and peroxidase) as well as total protein contents, while elevated the level of lipid peroxidation and reactive oxygen species. Moreover, expressions of steroidogenic enzymes (3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein) as well as the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) in plasma, intra-testicular testosterone and plasma testosterone were reduced and a significant (P < 0.05) reduction was noticed in the sperm count, motility and viability. Furthermore, PS MPs significantly up-regulated the expressions of Bax and caspase-3, while down-regulated the Bcl-2 expression. The histomorphological assessment revealed significant damages in the testicles as well as decrease in the number of germ cells (spermatogenic, spermatocytes and spermatids). Collectively, PS MPs generated oxidative stress (OS) and caused potential damage to the testicles of rats in a dose-dependent manner.