Cargando…
Research Note: First report on the detection of necrotic enteritis (NE) B-like toxin in biological samples from NE-afflicted chickens using capture enzyme-linked immunosorbent assay
Necrotic enteritis (NE) is a devastating enteric disease caused by Clostridium perfringens type G. One of the pore-forming toxins, NE B-like (NetB) toxin, secreted by pathogenic C. perfringens type G, has been proposed to be the main virulent factor in NE pathogenesis. The present study aimed to det...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182422/ https://www.ncbi.nlm.nih.gov/pubmed/34087701 http://dx.doi.org/10.1016/j.psj.2021.101190 |
Sumario: | Necrotic enteritis (NE) is a devastating enteric disease caused by Clostridium perfringens type G. One of the pore-forming toxins, NE B-like (NetB) toxin, secreted by pathogenic C. perfringens type G, has been proposed to be the main virulent factor in NE pathogenesis. The present study aimed to detect the presence of NetB toxin in biological samples of NE-afflicted chickens using NetB-specific monoclonal-based enzyme-linked immunosorbent assay (ELISA). Biological samples, including serum, digesta, and fecal droppings, were obtained from three previous NE studies (designated as Trials 1 to 3). In Trials 1 and 2, broiler chicks were infected with Eimeria maxima strain 41A on day 1 and followed by the netB-positive C. perfringens on day 18. Serum samples were obtained at 20 d post-hatch (i.e., 2 d post C. perfringens infection). In addition, various samples, including serum, gut digesta, and fecal droppings, that had been collected 0, 6, 24, and 30 h post C. perfringens infection were obtained. In Trial 3, broiler chicks were indirectly infected with litter-contaminated E. maxima on d 14 and followed by netB-positive C. perfringens via drinking water on days 18, 19, and 20. Serum samples and fecal droppings were obtained 21 d post-hatch (i.e., 1 d post last C. perfringens infection). The results showed that NetB toxin was not detected in serum samples in Trials 1 and 3. No NetB toxin was detected in all samples obtained before C. perfringens infection in Trial 2. Low but detectable amounts of NetB toxin were found in the serum samples obtained 6 h post C. perfringens infection in Trial 2. While NetB toxin in digesta and fecal droppings was detected 6 h post C. perfringens infection, its level plateaued 24 and 30 h post C. perfringens infection. In Trial 3, NetB toxin was detected in fecal droppings from the NE group, and its concentration ranged from 2.9 to 3.1 ng/g of wet feces. In Trial 2, NE-specific lesions were not seen 0 and 6 h post C. perfringens infection but exhibited lesions were moderate to severe 24 h post infection, leading to a moderate association (r = +0.527) between NE lesions and NetB toxin in the gut digesta. This is the first study to use NetB-specific monoclonal-based capture ELISA to determine and report the presence of native NetB toxin in biological samples from NE-induced chickens. |
---|