Cargando…

Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues

A study was conducted to understand the differentially expressed genes in Pectoralis (P) major under woody breast (WB) myopathy condition in a high yielding broiler strain using RNA-sequencing at the growing (d 21) and finishing (d 42 and d 56) grow-out ages. Follow-up study was conducted to underst...

Descripción completa

Detalles Bibliográficos
Autores principales: Maharjan, Pramir, Beitia, Antonio, Weil, Jordan, Suesuttajit, Nawin, Hilton, Katie, Caldas, Justina, Umberson, Cole, Martinez, Diego, Kong, Byungwhi, Owens, Casey M., Coon, Craig
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182436/
https://www.ncbi.nlm.nih.gov/pubmed/34087697
http://dx.doi.org/10.1016/j.psj.2021.101092
_version_ 1783704207531966464
author Maharjan, Pramir
Beitia, Antonio
Weil, Jordan
Suesuttajit, Nawin
Hilton, Katie
Caldas, Justina
Umberson, Cole
Martinez, Diego
Kong, Byungwhi
Owens, Casey M.
Coon, Craig
author_facet Maharjan, Pramir
Beitia, Antonio
Weil, Jordan
Suesuttajit, Nawin
Hilton, Katie
Caldas, Justina
Umberson, Cole
Martinez, Diego
Kong, Byungwhi
Owens, Casey M.
Coon, Craig
author_sort Maharjan, Pramir
collection PubMed
description A study was conducted to understand the differentially expressed genes in Pectoralis (P) major under woody breast (WB) myopathy condition in a high yielding broiler strain using RNA-sequencing at the growing (d 21) and finishing (d 42 and d 56) grow-out ages. Follow-up study was conducted to understand the in vivo triglyceride (TG) synthesis (d 49) occurring in adipogenic tissues using deuterium oxide ((2)H(2)O) as a metabolic tracer. Results indicated the top physiological systems affected in myopathy broiler were related to the musculo-skeletal system (d 21, 42, and 56) and cardiovascular system (d 42 and 56). Ubiquitin-specific proteases are expressed higher in myopathy broiler at d 21 (OTUD1) and d 42 (SACS) that potentially indicated higher degradation of muscle protein occurring at those ages. While genes related to transcription factors and muscle cell differentiation (ZNF234, BTG2) and muscle growth (IGF1) were upregulated with myopathy broiler suggesting concurrent muscle fiber regeneration. The downregulation of PYGB and MGAM genes related to carbohydrate transport and metabolism at d 42 potentially indicated nutrient-deficient state of myopathy affected fibers; whereas the nutrient-deficient physiological state of cells seemed to be counteracted by up-regulation of genes related to carbohydrate (ALDOB, GPD1L2) at d 56. There was a reduced (P < 0.05) in vivo TG synthesis in liver of the myopathy broiler (0.123 %/hr) compared to non-myopathy broiler (0.197 %/hr). The majority of TG synthesized in liver with myopathy broiler could conceivably be delivered to P. major (rather than to abdominal fat pad storage) to fulfil the increased energy need of muscle cells (via TG lipolysis and fatty acid [FA] oxidation). The increased utilization of FAs in the WB affected muscle could result in reduced secretion of FAs into blood circulation leading to sub-optimal availability of FAs for re-esterification for TG synthesis in liver. Results indicated that myopathy broiler at later age (d 56) of grow-out period were synchronously going through adaptive physiological processes of feedback responses to adverse cellular states.
format Online
Article
Text
id pubmed-8182436
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-81824362021-06-16 Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues Maharjan, Pramir Beitia, Antonio Weil, Jordan Suesuttajit, Nawin Hilton, Katie Caldas, Justina Umberson, Cole Martinez, Diego Kong, Byungwhi Owens, Casey M. Coon, Craig Poult Sci PHYSIOLOGY AND REPRODUCTION A study was conducted to understand the differentially expressed genes in Pectoralis (P) major under woody breast (WB) myopathy condition in a high yielding broiler strain using RNA-sequencing at the growing (d 21) and finishing (d 42 and d 56) grow-out ages. Follow-up study was conducted to understand the in vivo triglyceride (TG) synthesis (d 49) occurring in adipogenic tissues using deuterium oxide ((2)H(2)O) as a metabolic tracer. Results indicated the top physiological systems affected in myopathy broiler were related to the musculo-skeletal system (d 21, 42, and 56) and cardiovascular system (d 42 and 56). Ubiquitin-specific proteases are expressed higher in myopathy broiler at d 21 (OTUD1) and d 42 (SACS) that potentially indicated higher degradation of muscle protein occurring at those ages. While genes related to transcription factors and muscle cell differentiation (ZNF234, BTG2) and muscle growth (IGF1) were upregulated with myopathy broiler suggesting concurrent muscle fiber regeneration. The downregulation of PYGB and MGAM genes related to carbohydrate transport and metabolism at d 42 potentially indicated nutrient-deficient state of myopathy affected fibers; whereas the nutrient-deficient physiological state of cells seemed to be counteracted by up-regulation of genes related to carbohydrate (ALDOB, GPD1L2) at d 56. There was a reduced (P < 0.05) in vivo TG synthesis in liver of the myopathy broiler (0.123 %/hr) compared to non-myopathy broiler (0.197 %/hr). The majority of TG synthesized in liver with myopathy broiler could conceivably be delivered to P. major (rather than to abdominal fat pad storage) to fulfil the increased energy need of muscle cells (via TG lipolysis and fatty acid [FA] oxidation). The increased utilization of FAs in the WB affected muscle could result in reduced secretion of FAs into blood circulation leading to sub-optimal availability of FAs for re-esterification for TG synthesis in liver. Results indicated that myopathy broiler at later age (d 56) of grow-out period were synchronously going through adaptive physiological processes of feedback responses to adverse cellular states. Elsevier 2021-03-12 /pmc/articles/PMC8182436/ /pubmed/34087697 http://dx.doi.org/10.1016/j.psj.2021.101092 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle PHYSIOLOGY AND REPRODUCTION
Maharjan, Pramir
Beitia, Antonio
Weil, Jordan
Suesuttajit, Nawin
Hilton, Katie
Caldas, Justina
Umberson, Cole
Martinez, Diego
Kong, Byungwhi
Owens, Casey M.
Coon, Craig
Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues
title Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues
title_full Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues
title_fullStr Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues
title_full_unstemmed Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues
title_short Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues
title_sort woody breast myopathy broiler show age-dependent adaptive differential gene expression in pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues
topic PHYSIOLOGY AND REPRODUCTION
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182436/
https://www.ncbi.nlm.nih.gov/pubmed/34087697
http://dx.doi.org/10.1016/j.psj.2021.101092
work_keys_str_mv AT maharjanpramir woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT beitiaantonio woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT weiljordan woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT suesuttajitnawin woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT hiltonkatie woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT caldasjustina woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT umbersoncole woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT martinezdiego woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT kongbyungwhi woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT owenscaseym woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues
AT cooncraig woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues