Cargando…
Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues
A study was conducted to understand the differentially expressed genes in Pectoralis (P) major under woody breast (WB) myopathy condition in a high yielding broiler strain using RNA-sequencing at the growing (d 21) and finishing (d 42 and d 56) grow-out ages. Follow-up study was conducted to underst...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182436/ https://www.ncbi.nlm.nih.gov/pubmed/34087697 http://dx.doi.org/10.1016/j.psj.2021.101092 |
_version_ | 1783704207531966464 |
---|---|
author | Maharjan, Pramir Beitia, Antonio Weil, Jordan Suesuttajit, Nawin Hilton, Katie Caldas, Justina Umberson, Cole Martinez, Diego Kong, Byungwhi Owens, Casey M. Coon, Craig |
author_facet | Maharjan, Pramir Beitia, Antonio Weil, Jordan Suesuttajit, Nawin Hilton, Katie Caldas, Justina Umberson, Cole Martinez, Diego Kong, Byungwhi Owens, Casey M. Coon, Craig |
author_sort | Maharjan, Pramir |
collection | PubMed |
description | A study was conducted to understand the differentially expressed genes in Pectoralis (P) major under woody breast (WB) myopathy condition in a high yielding broiler strain using RNA-sequencing at the growing (d 21) and finishing (d 42 and d 56) grow-out ages. Follow-up study was conducted to understand the in vivo triglyceride (TG) synthesis (d 49) occurring in adipogenic tissues using deuterium oxide ((2)H(2)O) as a metabolic tracer. Results indicated the top physiological systems affected in myopathy broiler were related to the musculo-skeletal system (d 21, 42, and 56) and cardiovascular system (d 42 and 56). Ubiquitin-specific proteases are expressed higher in myopathy broiler at d 21 (OTUD1) and d 42 (SACS) that potentially indicated higher degradation of muscle protein occurring at those ages. While genes related to transcription factors and muscle cell differentiation (ZNF234, BTG2) and muscle growth (IGF1) were upregulated with myopathy broiler suggesting concurrent muscle fiber regeneration. The downregulation of PYGB and MGAM genes related to carbohydrate transport and metabolism at d 42 potentially indicated nutrient-deficient state of myopathy affected fibers; whereas the nutrient-deficient physiological state of cells seemed to be counteracted by up-regulation of genes related to carbohydrate (ALDOB, GPD1L2) at d 56. There was a reduced (P < 0.05) in vivo TG synthesis in liver of the myopathy broiler (0.123 %/hr) compared to non-myopathy broiler (0.197 %/hr). The majority of TG synthesized in liver with myopathy broiler could conceivably be delivered to P. major (rather than to abdominal fat pad storage) to fulfil the increased energy need of muscle cells (via TG lipolysis and fatty acid [FA] oxidation). The increased utilization of FAs in the WB affected muscle could result in reduced secretion of FAs into blood circulation leading to sub-optimal availability of FAs for re-esterification for TG synthesis in liver. Results indicated that myopathy broiler at later age (d 56) of grow-out period were synchronously going through adaptive physiological processes of feedback responses to adverse cellular states. |
format | Online Article Text |
id | pubmed-8182436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-81824362021-06-16 Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues Maharjan, Pramir Beitia, Antonio Weil, Jordan Suesuttajit, Nawin Hilton, Katie Caldas, Justina Umberson, Cole Martinez, Diego Kong, Byungwhi Owens, Casey M. Coon, Craig Poult Sci PHYSIOLOGY AND REPRODUCTION A study was conducted to understand the differentially expressed genes in Pectoralis (P) major under woody breast (WB) myopathy condition in a high yielding broiler strain using RNA-sequencing at the growing (d 21) and finishing (d 42 and d 56) grow-out ages. Follow-up study was conducted to understand the in vivo triglyceride (TG) synthesis (d 49) occurring in adipogenic tissues using deuterium oxide ((2)H(2)O) as a metabolic tracer. Results indicated the top physiological systems affected in myopathy broiler were related to the musculo-skeletal system (d 21, 42, and 56) and cardiovascular system (d 42 and 56). Ubiquitin-specific proteases are expressed higher in myopathy broiler at d 21 (OTUD1) and d 42 (SACS) that potentially indicated higher degradation of muscle protein occurring at those ages. While genes related to transcription factors and muscle cell differentiation (ZNF234, BTG2) and muscle growth (IGF1) were upregulated with myopathy broiler suggesting concurrent muscle fiber regeneration. The downregulation of PYGB and MGAM genes related to carbohydrate transport and metabolism at d 42 potentially indicated nutrient-deficient state of myopathy affected fibers; whereas the nutrient-deficient physiological state of cells seemed to be counteracted by up-regulation of genes related to carbohydrate (ALDOB, GPD1L2) at d 56. There was a reduced (P < 0.05) in vivo TG synthesis in liver of the myopathy broiler (0.123 %/hr) compared to non-myopathy broiler (0.197 %/hr). The majority of TG synthesized in liver with myopathy broiler could conceivably be delivered to P. major (rather than to abdominal fat pad storage) to fulfil the increased energy need of muscle cells (via TG lipolysis and fatty acid [FA] oxidation). The increased utilization of FAs in the WB affected muscle could result in reduced secretion of FAs into blood circulation leading to sub-optimal availability of FAs for re-esterification for TG synthesis in liver. Results indicated that myopathy broiler at later age (d 56) of grow-out period were synchronously going through adaptive physiological processes of feedback responses to adverse cellular states. Elsevier 2021-03-12 /pmc/articles/PMC8182436/ /pubmed/34087697 http://dx.doi.org/10.1016/j.psj.2021.101092 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | PHYSIOLOGY AND REPRODUCTION Maharjan, Pramir Beitia, Antonio Weil, Jordan Suesuttajit, Nawin Hilton, Katie Caldas, Justina Umberson, Cole Martinez, Diego Kong, Byungwhi Owens, Casey M. Coon, Craig Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues |
title | Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues |
title_full | Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues |
title_fullStr | Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues |
title_full_unstemmed | Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues |
title_short | Woody breast myopathy broiler show age-dependent adaptive differential gene expression in Pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues |
title_sort | woody breast myopathy broiler show age-dependent adaptive differential gene expression in pectoralis major and altered in-vivo triglyceride kinetics in adipogenic tissues |
topic | PHYSIOLOGY AND REPRODUCTION |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182436/ https://www.ncbi.nlm.nih.gov/pubmed/34087697 http://dx.doi.org/10.1016/j.psj.2021.101092 |
work_keys_str_mv | AT maharjanpramir woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT beitiaantonio woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT weiljordan woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT suesuttajitnawin woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT hiltonkatie woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT caldasjustina woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT umbersoncole woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT martinezdiego woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT kongbyungwhi woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT owenscaseym woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues AT cooncraig woodybreastmyopathybroilershowagedependentadaptivedifferentialgeneexpressioninpectoralismajorandalteredinvivotriglyceridekineticsinadipogenictissues |