Cargando…
Artificial neural network model from a case series of COVID-19 patients: a prognostic analysis
BACKGROUND AND AIM: There is a need to determine which clinical variables predict the severity of COVID-19. We analyzed a series of critically ill COVID-19 patients to see if any of our dataset’s clinical variables were associated with patient outcomes. METHODS: We retrospectively analyzed the data...
Autores principales: | Venturini, Sergio, Orso, Daniele, Cugini, Francesco, Crapis, Massimo, Fossati, Sara, Callegari, Astrid, Pellis, Tommaso, Tomasello, Dario Carmelo, Tonizzo, Maurizio, Grembiale, Alessandro, D’Andrea, Natascia, Vetrugno, Luigi, Bove, Tiziana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mattioli 1885
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182608/ https://www.ncbi.nlm.nih.gov/pubmed/33988146 http://dx.doi.org/10.23750/abm.v92i2.11086 |
Ejemplares similares
-
Development and Validation of the Acute PNeumonia Early Assessment Score for Safely Discharging Low-Risk SARS-CoV-2-Infected Patients from the Emergency Department
por: Venturini, Sergio, et al.
Publicado: (2022) -
Endotracheal intubation to reduce aspiration events in acutely comatose patients: a systematic review
por: Orso, Daniele, et al.
Publicado: (2020) -
Ramped position, an uncertain future
por: Vetrugno, Luigi, et al.
Publicado: (2018) -
Ultrasound of the diaphragm-an essential tool for pulmonologists and intensivists
por: Vetrugno, Luigi, et al.
Publicado: (2020) -
Lung Ultrasound Score in Critically Ill COVID-19 Patients: A Waste of Time or a Time-Saving Tool?
por: Meroi, Francesco, et al.
Publicado: (2021)