Cargando…

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

The resonance Raman effect (RRE) is a phenomenon which results in a strong selective enhancement of Raman signals from the samples. Previous studies showed that the RRE in liquid water directly corresponds to its supramolecular structure. It was also reported that the electric-field-induced orientat...

Descripción completa

Detalles Bibliográficos
Autores principales: Filipczak, Paulina, Hałagan, Krzysztof, Ulański, Jacek, Kozanecki, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182675/
https://www.ncbi.nlm.nih.gov/pubmed/34136325
http://dx.doi.org/10.3762/bjnano.12.40
Descripción
Sumario:The resonance Raman effect (RRE) is a phenomenon which results in a strong selective enhancement of Raman signals from the samples. Previous studies showed that the RRE in liquid water directly corresponds to its supramolecular structure. It was also reported that the electric-field-induced orientation of water molecules on the electrode surface results in the surface-enhanced Raman scattering (SERS) effect. In this work, we show the SERS effect for water molecules in the dispersion of silver nanoparticles (AgNPs) without any external electrical field. An enhancement factor was estimated to be (4.8 ± 0.8) × 10(6) for an excitation wavelength of 514.5 nm and for AgNPs with an average size of 34 ± 14 nm. The temperature experiment results showed a higher enhancement with temperature increase. Performed simulation studies revealed a slowdown of the mobility of the water molecules close to the surface of AgNPs.