Cargando…
Predicting the incidence of COVID-19 using data mining
BACKGROUND: The high prevalence of COVID-19 has made it a new pandemic. Predicting both its prevalence and incidence throughout the world is crucial to help health professionals make key decisions. In this study, we aim to predict the incidence of COVID-19 within a two-week period to better manage t...
Autores principales: | Ahouz, Fatemeh, Golabpour, Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182740/ https://www.ncbi.nlm.nih.gov/pubmed/34098928 http://dx.doi.org/10.1186/s12889-021-11058-3 |
Ejemplares similares
-
Data Mining Based Techniques for Covid-19 Predictions
por: Rane, Rahul, et al.
Publicado: (2023) -
Providing an imputation algorithm for missing values of longitudinal data using Cuckoo search algorithm: A case study on cervical dystonia
por: Golabpour, Amin, et al.
Publicado: (2017) -
Predicting COVID-19 Incidence Through Analysis of Google Trends Data in Iran: Data Mining and Deep Learning Pilot Study
por: Ayyoubzadeh, Seyed Mohammad, et al.
Publicado: (2020) -
A Dynamic Model for Imputing Missing Medical Data: A Multiobjective Particle Swarm Optimization Algorithm
por: Almasinejad, Peyman, et al.
Publicado: (2021) -
Colorectal Cancer in North-Eastern Iran: a retrospective, comparative study of early-onset and late-onset cases based on data from the Iranian hereditary colorectal cancer registry
por: Hoseini, Benyamin, et al.
Publicado: (2022)