Cargando…
Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge
Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comp...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183044/ https://www.ncbi.nlm.nih.gov/pubmed/34100010 http://dx.doi.org/10.21203/rs.3.rs-571332/v1 |
_version_ | 1783704308733181952 |
---|---|
author | Roth, Holger R. Xu, Ziyue Diez, Carlos Tor Jacob, Ramon Sanchez Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George |
author_facet | Roth, Holger R. Xu, Ziyue Diez, Carlos Tor Jacob, Ramon Sanchez Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George |
author_sort | Roth, Holger R. |
collection | PubMed |
description | Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020. |
format | Online Article Text |
id | pubmed-8183044 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-81830442021-06-08 Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge Roth, Holger R. Xu, Ziyue Diez, Carlos Tor Jacob, Ramon Sanchez Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George Res Sq Article Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020. American Journal Experts 2021-06-04 /pmc/articles/PMC8183044/ /pubmed/34100010 http://dx.doi.org/10.21203/rs.3.rs-571332/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Roth, Holger R. Xu, Ziyue Diez, Carlos Tor Jacob, Ramon Sanchez Zember, Jonathan Molto, Jose Li, Wenqi Xu, Sheng Turkbey, Baris Turkbey, Evrim Yang, Dong Harouni, Ahmed Rieke, Nicola Hu, Shishuai Isensee, Fabian Tang, Claire Yu, Qinji Sölter, Jan Zheng, Tong Liauchuk, Vitali Zhou, Ziqi Moltz, Jan Hendrik Oliveira, Bruno Xia, Yong Maier-Hein, Klaus H. Li, Qikai Husch, Andreas Zhang, Luyang Kovalev, Vassili Kang, Li Hering, Alessa Vilaça, João L. Flores, Mona Xu, Daguang Wood, Bradford Linguraru, Marius George Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title | Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_full | Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_fullStr | Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_full_unstemmed | Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_short | Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge |
title_sort | rapid artificial intelligence solutions in a pandemic - the covid-19-20 lung ct lesion segmentation challenge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183044/ https://www.ncbi.nlm.nih.gov/pubmed/34100010 http://dx.doi.org/10.21203/rs.3.rs-571332/v1 |
work_keys_str_mv | AT rothholgerr rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT xuziyue rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT diezcarlostor rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT jacobramonsanchez rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT zemberjonathan rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT moltojose rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT liwenqi rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT xusheng rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT turkbeybaris rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT turkbeyevrim rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT yangdong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT harouniahmed rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT riekenicola rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT hushishuai rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT isenseefabian rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT tangclaire rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT yuqinji rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT solterjan rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT zhengtong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT liauchukvitali rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT zhouziqi rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT moltzjanhendrik rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT oliveirabruno rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT xiayong rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT maierheinklaush rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT liqikai rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT huschandreas rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT zhangluyang rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT kovalevvassili rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT kangli rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT heringalessa rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT vilacajoaol rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT floresmona rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT xudaguang rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT woodbradford rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge AT lingurarumariusgeorge rapidartificialintelligencesolutionsinapandemicthecovid1920lungctlesionsegmentationchallenge |