Cargando…

ITRAQ-based quantitative proteomics reveals the proteome profiles of MDBK cells infected with bovine viral diarrhea virus

BACKGROUND: Bovine viral diarrhea (BVD) which is caused by Bovine viral diarrhea virus (BVDV), is an acute, contagious disease. In spite of the use of vaccines and elimination projects, BVDV still causes severe economic losses to the cattle industry for the past few years. The current study presents...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yaxin, Guo, Tao, Wang, Xiaokui, Ni, Wei, Hu, Ruirui, Cui, Yuying, Mi, Taotao, Hu, Shengwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183066/
https://www.ncbi.nlm.nih.gov/pubmed/34092256
http://dx.doi.org/10.1186/s12985-021-01592-2
Descripción
Sumario:BACKGROUND: Bovine viral diarrhea (BVD) which is caused by Bovine viral diarrhea virus (BVDV), is an acute, contagious disease. In spite of the use of vaccines and elimination projects, BVDV still causes severe economic losses to the cattle industry for the past few years. The current study presents a preliminary analysis of the pathogenic mechanisms from the perspective of protein expression levels in infected host cells at different points in time to elucidate the infection process associated with BVDV. METHODS: We used the isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with liquid chromatography-tandem mass spectrometric (LC–MS/MS) approach for a quantitative proteomics comparison of BVDV NADL-infected MDBK cells and non-infected cells. The functions of the proteins were deduced by functional annotation and their involvement in metabolic processes explored by KEGG pathway analysis to identify their interactions. RESULTS: There were 357 (47.6% downregulated, 52.4% upregulated infected vs. control), 101 (52.5% downregulated, 47.5% upregulated infected vs. control), and 66 (21.2% downregulated, 78.8% upregulated infected vs. control) proteins were differentially expressed (fold change > 1.5 or < 0.67) in the BVDV NADL-infected MDBK cells at 12, 24, and 48 h after infection. GO analysis showed that the differentially expressed proteins (DEPs) are mainly involved in metabolic processes, biological regulation and localization. KEGG enrichment analysis showed that some signaling pathways that involved in the regulation of BVDV NADL-infection and host resistance are significantly (P < 0.05) enriched at different stages of the BVDV NADL-infection, such as Endocytosis signaling pathway, FoxO signaling pathway, Homologous recombination signaling pathway and Lysosome pathway. CONCLUSIONS: These results revealed that the DEPs in BVDV NADL-infected MDBK cells have a wide range of regulatory effects; in addition, they provide a lot of resources for the study of host cell proteomics after BVDV infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12985-021-01592-2.