Cargando…

Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels

BACKGROUND: The accessory β1 subunits, regulating the pharmacological and biophysical properties of BK channels, always undergo post-translational modifications, especially glycosylation. To date, it remains elusive whether the glycosylation contributes to the regulation of BK channels by β1 subunit...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoli, Xiao, Qian, Zhu, Yudan, Qi, Hong, Qu, Dongxiao, Yao, Yu, Jia, Yuxiang, Guo, Jingkan, Cheng, Jiwei, Ji, Yonghua, Li, Guoyi, Tao, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Centro de Estudos de Venenos e Animais Peçonhentos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183112/
https://www.ncbi.nlm.nih.gov/pubmed/34149831
http://dx.doi.org/10.1590/1678-9199-JVATITD-2020-0182
_version_ 1783704322122448896
author Wang, Xiaoli
Xiao, Qian
Zhu, Yudan
Qi, Hong
Qu, Dongxiao
Yao, Yu
Jia, Yuxiang
Guo, Jingkan
Cheng, Jiwei
Ji, Yonghua
Li, Guoyi
Tao, Jie
author_facet Wang, Xiaoli
Xiao, Qian
Zhu, Yudan
Qi, Hong
Qu, Dongxiao
Yao, Yu
Jia, Yuxiang
Guo, Jingkan
Cheng, Jiwei
Ji, Yonghua
Li, Guoyi
Tao, Jie
author_sort Wang, Xiaoli
collection PubMed
description BACKGROUND: The accessory β1 subunits, regulating the pharmacological and biophysical properties of BK channels, always undergo post-translational modifications, especially glycosylation. To date, it remains elusive whether the glycosylation contributes to the regulation of BK channels by β1 subunits. METHODS: Herein, we combined the electrophysiological approach with molecular mutations and biochemical manipulation to investigate the function roles of N-glycosylation in β1 subunits. RESULTS: The results show that deglycosylation of β1 subunits through double-site mutations (β1 N80A/N142A or β1 N80Q/N142Q) could significantly increase the inhibitory potency of iberiotoxin, a specific BK channel blocker. The deglycosylated channels also have a different sensitivity to martentoxin, another BK channel modulator with some remarkable effects as reported before. On the contrary to enhancing effects of martentoxin on glycosylated BK channels under the presence of cytoplasmic Ca(2+), deglycosylated channels were not affected by the toxin. However, the deglycosylated channels were surprisingly inhibited by martentoxin under the absence of cytoplasmic Ca(2+), while the glycosylated channels were not inhibited under this same condition. In addition, wild type BK (α+β1) channels treated with PNGase F also showed the same trend of pharmacological results to the mutants. Similar to this modulation of glycosylation on BK channel pharmacology, the deglycosylated forms of the channels were activated at a faster speed than the glycosylated ones. However, the V(1/2) and slope were not changed by the glycosylation. CONCLUSION: The present study reveals that glycosylation is an indispensable determinant of the modulation of β1-subunit on BK channel pharmacology and its activation. The loss of glycosylation of β1 subunits could lead to the dysfunction of BK channel, resulting in a pathological state.
format Online
Article
Text
id pubmed-8183112
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Centro de Estudos de Venenos e Animais Peçonhentos
record_format MEDLINE/PubMed
spelling pubmed-81831122021-06-17 Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels Wang, Xiaoli Xiao, Qian Zhu, Yudan Qi, Hong Qu, Dongxiao Yao, Yu Jia, Yuxiang Guo, Jingkan Cheng, Jiwei Ji, Yonghua Li, Guoyi Tao, Jie J Venom Anim Toxins Incl Trop Dis Research BACKGROUND: The accessory β1 subunits, regulating the pharmacological and biophysical properties of BK channels, always undergo post-translational modifications, especially glycosylation. To date, it remains elusive whether the glycosylation contributes to the regulation of BK channels by β1 subunits. METHODS: Herein, we combined the electrophysiological approach with molecular mutations and biochemical manipulation to investigate the function roles of N-glycosylation in β1 subunits. RESULTS: The results show that deglycosylation of β1 subunits through double-site mutations (β1 N80A/N142A or β1 N80Q/N142Q) could significantly increase the inhibitory potency of iberiotoxin, a specific BK channel blocker. The deglycosylated channels also have a different sensitivity to martentoxin, another BK channel modulator with some remarkable effects as reported before. On the contrary to enhancing effects of martentoxin on glycosylated BK channels under the presence of cytoplasmic Ca(2+), deglycosylated channels were not affected by the toxin. However, the deglycosylated channels were surprisingly inhibited by martentoxin under the absence of cytoplasmic Ca(2+), while the glycosylated channels were not inhibited under this same condition. In addition, wild type BK (α+β1) channels treated with PNGase F also showed the same trend of pharmacological results to the mutants. Similar to this modulation of glycosylation on BK channel pharmacology, the deglycosylated forms of the channels were activated at a faster speed than the glycosylated ones. However, the V(1/2) and slope were not changed by the glycosylation. CONCLUSION: The present study reveals that glycosylation is an indispensable determinant of the modulation of β1-subunit on BK channel pharmacology and its activation. The loss of glycosylation of β1 subunits could lead to the dysfunction of BK channel, resulting in a pathological state. Centro de Estudos de Venenos e Animais Peçonhentos 2021-06-02 /pmc/articles/PMC8183112/ /pubmed/34149831 http://dx.doi.org/10.1590/1678-9199-JVATITD-2020-0182 Text en https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License
spellingShingle Research
Wang, Xiaoli
Xiao, Qian
Zhu, Yudan
Qi, Hong
Qu, Dongxiao
Yao, Yu
Jia, Yuxiang
Guo, Jingkan
Cheng, Jiwei
Ji, Yonghua
Li, Guoyi
Tao, Jie
Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels
title Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels
title_full Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels
title_fullStr Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels
title_full_unstemmed Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels
title_short Glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of BK channels
title_sort glycosylation of β1 subunit plays a pivotal role in the toxin sensitivity and activation of bk channels
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183112/
https://www.ncbi.nlm.nih.gov/pubmed/34149831
http://dx.doi.org/10.1590/1678-9199-JVATITD-2020-0182
work_keys_str_mv AT wangxiaoli glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT xiaoqian glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT zhuyudan glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT qihong glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT qudongxiao glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT yaoyu glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT jiayuxiang glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT guojingkan glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT chengjiwei glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT jiyonghua glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT liguoyi glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels
AT taojie glycosylationofb1subunitplaysapivotalroleinthetoxinsensitivityandactivationofbkchannels