Cargando…
Atrial fibrillation detection from raw photoplethysmography waveforms: A deep learning application
BACKGROUND: Atrial fibrillation (AF), a common cause of stroke, often is asymptomatic. Smartphones and smartwatches can detect AF using heart rate patterns inferred using photoplethysmography (PPG); however, enhanced accuracy is required to reduce false positives in screening populations. OBJECTIVE:...
Autores principales: | Aschbacher, Kirstin, Yilmaz, Defne, Kerem, Yaniv, Crawford, Stuart, Benaron, David, Liu, Jiaqi, Eaton, Meghan, Tison, Geoffrey H., Olgin, Jeffrey E., Li, Yihan, Marcus, Gregory M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183963/ https://www.ncbi.nlm.nih.gov/pubmed/34113853 http://dx.doi.org/10.1016/j.hroo.2020.02.002 |
Ejemplares similares
-
Machine learning prediction of blood alcohol concentration: a digital signature of smart-breathalyzer behavior
por: Aschbacher, Kirstin, et al.
Publicado: (2021) -
Comparison of the Physical Activity Measured by a Consumer Wearable Activity Tracker and That Measured by Self-Report: Cross-Sectional Analysis of the Health eHeart Study
por: Beagle, Alexander J, et al.
Publicado: (2020) -
Photoplethysmography based atrial fibrillation detection: a review
por: Pereira, Tania, et al.
Publicado: (2020) -
Postoperative Pain Assessment Indices Based on Photoplethysmography Waveform Analysis
por: Yang, Yoon La, et al.
Publicado: (2018) -
PPGSynth: An Innovative Toolbox for Synthesizing Regular and Irregular Photoplethysmography Waveforms
por: Tang, Qunfeng, et al.
Publicado: (2020)