Cargando…
An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations
In-memory computing may enable multiply-accumulate (MAC) operations, which are the primary calculations used in artificial intelligence (AI). Performing MAC operations with high capacity in a small area with high energy efficiency remains a challenge. In this work, we propose a circuit architecture...
Autores principales: | Wang, Yin, Tang, Hongwei, Xie, Yufeng, Chen, Xinyu, Ma, Shunli, Sun, Zhengzong, Sun, Qingqing, Chen, Lin, Zhu, Hao, Wan, Jing, Xu, Zihan, Zhang, David Wei, Zhou, Peng, Bao, Wenzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184885/ https://www.ncbi.nlm.nih.gov/pubmed/34099710 http://dx.doi.org/10.1038/s41467-021-23719-3 |
Ejemplares similares
-
Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning
por: Chen, Xinyu, et al.
Publicado: (2021) -
A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors
por: Ma, Shunli, et al.
Publicado: (2022) -
Advanced semiconductor memories: architectures designs and applications
por: Sharma, Ashok K
Publicado: (2003) -
Theoretical Analysis of Terahertz Frequency Multiplier Based on Semiconductor Superlattices
por: Feng, Wei, et al.
Publicado: (2022) -
High- and low-pressure operation of the gas electron multiplier
por: Bondar, A E, et al.
Publicado: (1998)