Cargando…
Novel robust time series analysis for long-term and short-term prediction
Nonlinear phenomena are universal in ecology. However, their inference and prediction are generally difficult because of autocorrelation and outliers. A traditional least squares method for parameter estimation is capable of improving short-term prediction by estimating autocorrelation, whereas it h...
Autores principales: | Okamura, Hiroshi, Osada, Yutaka, Nishijima, Shota, Eguchi, Shinto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184922/ https://www.ncbi.nlm.nih.gov/pubmed/34099758 http://dx.doi.org/10.1038/s41598-021-91327-8 |
Ejemplares similares
-
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory
por: Yang, Haimin, et al.
Publicado: (2017) -
Prediction of Time-Series Transcriptomic Gene Expression Based on Long Short-Term Memory with Empirical Mode Decomposition
por: Zhou, Ying, et al.
Publicado: (2022) -
Two robust long short-term memory frameworks for trading stocks
por: Fister, Dušan, et al.
Publicado: (2021) -
Fuzzy inference-based LSTM for long-term time series prediction
por: Wang, Weina, et al.
Publicado: (2023) -
Influence of Transfer Entropy in the Short-Term Prediction of Financial Time Series Using an ∊-Machine
por: Zavala-Díaz, José Crispín, et al.
Publicado: (2022)