Cargando…

Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries

Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Guorui, Yin, Yijie, Xia, Dawei, Chen, Amanda A., Holoubek, John, Scharf, Jonathan, Yang, Yangyuchen, Koh, Ki Hwan, Li, Mingqian, Davies, Daniel M., Mayer, Matthew, Han, Tae Hee, Meng, Ying Shirley, Pascal, Tod A., Chen, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184934/
https://www.ncbi.nlm.nih.gov/pubmed/34099643
http://dx.doi.org/10.1038/s41467-021-23603-0
_version_ 1783704678914064384
author Cai, Guorui
Yin, Yijie
Xia, Dawei
Chen, Amanda A.
Holoubek, John
Scharf, Jonathan
Yang, Yangyuchen
Koh, Ki Hwan
Li, Mingqian
Davies, Daniel M.
Mayer, Matthew
Han, Tae Hee
Meng, Ying Shirley
Pascal, Tod A.
Chen, Zheng
author_facet Cai, Guorui
Yin, Yijie
Xia, Dawei
Chen, Amanda A.
Holoubek, John
Scharf, Jonathan
Yang, Yangyuchen
Koh, Ki Hwan
Li, Mingqian
Davies, Daniel M.
Mayer, Matthew
Han, Tae Hee
Meng, Ying Shirley
Pascal, Tod A.
Chen, Zheng
author_sort Cai, Guorui
collection PubMed
description Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g(−1) vs. <0.03 mAh g(−1)) at −40 °C under reduced pressure of the electrolyte.
format Online
Article
Text
id pubmed-8184934
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81849342021-06-11 Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries Cai, Guorui Yin, Yijie Xia, Dawei Chen, Amanda A. Holoubek, John Scharf, Jonathan Yang, Yangyuchen Koh, Ki Hwan Li, Mingqian Davies, Daniel M. Mayer, Matthew Han, Tae Hee Meng, Ying Shirley Pascal, Tod A. Chen, Zheng Nat Commun Article Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g(−1) vs. <0.03 mAh g(−1)) at −40 °C under reduced pressure of the electrolyte. Nature Publishing Group UK 2021-06-07 /pmc/articles/PMC8184934/ /pubmed/34099643 http://dx.doi.org/10.1038/s41467-021-23603-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Cai, Guorui
Yin, Yijie
Xia, Dawei
Chen, Amanda A.
Holoubek, John
Scharf, Jonathan
Yang, Yangyuchen
Koh, Ki Hwan
Li, Mingqian
Davies, Daniel M.
Mayer, Matthew
Han, Tae Hee
Meng, Ying Shirley
Pascal, Tod A.
Chen, Zheng
Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries
title Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries
title_full Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries
title_fullStr Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries
title_full_unstemmed Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries
title_short Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries
title_sort sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184934/
https://www.ncbi.nlm.nih.gov/pubmed/34099643
http://dx.doi.org/10.1038/s41467-021-23603-0
work_keys_str_mv AT caiguorui subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT yinyijie subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT xiadawei subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT chenamandaa subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT holoubekjohn subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT scharfjonathan subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT yangyangyuchen subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT kohkihwan subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT limingqian subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT daviesdanielm subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT mayermatthew subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT hantaehee subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT mengyingshirley subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT pascaltoda subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries
AT chenzheng subnanometerconfinementenablesfacilecondensationofgaselectrolyteforlowtemperaturebatteries