Cargando…
Assembly and Covalent Cross-Linking of an Amine-Functionalised Metal-Organic Cage
The incorporation of reactive functional groups onto the exterior of metal-organic cages (MOCs) opens up new opportunities to link their well-defined scaffolds into functional porous solids. Amine moieties offer access to a rich catalogue of covalent chemistry; however, they also tend to coordinate...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185198/ https://www.ncbi.nlm.nih.gov/pubmed/34113604 http://dx.doi.org/10.3389/fchem.2021.696081 |
Sumario: | The incorporation of reactive functional groups onto the exterior of metal-organic cages (MOCs) opens up new opportunities to link their well-defined scaffolds into functional porous solids. Amine moieties offer access to a rich catalogue of covalent chemistry; however, they also tend to coordinate undesirably and interfere with MOC formation, particular in the case of Cu(2) paddlewheel-based MOCs. We demonstrate that tuning the basicity of an aniline-functionalized ligand enables the self-assembly of a soluble, amine-functionalized Cu(4)L(4) lantern cage (1). Importantly, we show control over the coordinative propensity of the exterior amine of the ligand, which enables us to isolate a crystalline, two-dimensional metal-organic framework composed entirely of MOC units (2). Furthermore, we show that the nucleophilicity of the exterior amine of 1 can be accessed in solution to generate a cross-linked cage polymer (3) via imine condensation. |
---|