Cargando…
Visual Field Inference From Optical Coherence Tomography Using Deep Learning Algorithms: A Comparison Between Devices
PURPOSE: To develop a deep learning model to estimate the visual field (VF) from spectral-domain optical coherence tomography (SD-OCT) and swept-source OCT (SS-OCT) and to compare the performance between them. METHODS: Two deep learning models based on Inception-ResNet-v2 were trained to estimate 24...
Autores principales: | Shin, Jonghoon, Kim, Sungjoon, Kim, Jinmi, Park, Keunheung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185404/ https://www.ncbi.nlm.nih.gov/pubmed/34086043 http://dx.doi.org/10.1167/tvst.10.7.4 |
Ejemplares similares
-
A deep learning approach to predict visual field using optical coherence tomography
por: Park, Keunheung, et al.
Publicado: (2020) -
Measurement of macular structure-function relationships using spectral domain-optical coherence tomography (SD-OCT) and pattern electroretinograms (PERG)
por: Park, Keunheung, et al.
Publicado: (2017) -
Correction: Measurement of macular structure-function relationships using spectral domain-optical coherence tomography (SD-OCT) and pattern electroretinograms (PERG)
por: Park, Keunheung, et al.
Publicado: (2017) -
Visual Field Prediction using Recurrent Neural Network
por: Park, Keunheung, et al.
Publicado: (2019) -
Author Correction: Visual Field Prediction using Recurrent Neural Network
por: Park, Keunheung, et al.
Publicado: (2019)