Cargando…
Improving Current Glycated Hemoglobin Prediction in Adults: Use of Machine Learning Algorithms With Electronic Health Records
BACKGROUND: Predicting the risk of glycated hemoglobin (HbA(1c)) elevation can help identify patients with the potential for developing serious chronic health problems, such as diabetes. Early preventive interventions based upon advanced predictive models using electronic health records data for ide...
Autores principales: | Alhassan, Zakhriya, Watson, Matthew, Budgen, David, Alshammari, Riyad, Alessa, Ali, Al Moubayed, Noura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185616/ https://www.ncbi.nlm.nih.gov/pubmed/34028357 http://dx.doi.org/10.2196/25237 |
Ejemplares similares
-
Predicting Current Glycated Hemoglobin Levels in Adults From Electronic Health Records: Validation of Multiple Logistic Regression Algorithm
por: Alhassan, Zakhriya, et al.
Publicado: (2020) -
Predicting Current Glycated Hemoglobin Values in Adults: Development of an Algorithm From the Electronic Health Record
por: Wells, Brian J, et al.
Publicado: (2018) -
Data Anonymization for Pervasive Health Care: Systematic Literature Mapping Study
por: Zuo, Zheming, et al.
Publicado: (2021) -
Using Machine Learning to Predict Early Preparation of Pharmacy Prescriptions at PSMMC - a Comparison of Four Machine Learning Algorithms
por: Alhorishi, Nora, et al.
Publicado: (2021) -
PetBERT: automated ICD-11 syndromic disease coding for outbreak detection in first opinion veterinary electronic health records
por: Farrell, Sean, et al.
Publicado: (2023)