Cargando…

Genome-wide characterization of microsatellite DNA in fishes: survey and analysis of their abundance and frequency in genome-specific regions

BACKGROUND: Microsatellite repeats are ubiquitous in organism genomes and play an important role in the chromatin organization, regulation of gene activity, recombination and DNA replication. Although microsatellite distribution patterns have been studied in most phylogenetic lineages, they are uncl...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Yi, Zhou, Yu, Price, Megan, Song, Zhaobin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186053/
https://www.ncbi.nlm.nih.gov/pubmed/34098869
http://dx.doi.org/10.1186/s12864-021-07752-6
Descripción
Sumario:BACKGROUND: Microsatellite repeats are ubiquitous in organism genomes and play an important role in the chromatin organization, regulation of gene activity, recombination and DNA replication. Although microsatellite distribution patterns have been studied in most phylogenetic lineages, they are unclear in fish species. RESULTS: Here, we present the first systematic examination of microsatellite distribution in coding and non-coding regions of 14 fish genomes. Our study showed that the number and type of microsatellites displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation and DNA replication slippage theories alone were insufficient to explain the distribution patterns. Our results showed that microsatellites are dominant in non-coding regions. The total number of microsatellites ranged from 78,378 to 1,012,084, and the relative density varied from 4925.76 bp/Mb to 25,401.97 bp/Mb. Overall, (A + T)-rich repeats were dominant. The dependence of repeat abundance on the length of the repeated unit (1–6 nt) showed a great similarity decrease, whereas more tri-nucleotide repeats were found in exonic regions than tetra-nucleotide repeats of most species. Moreover, the incidence of different repeated types appeared species- and genomic-specific. These results highlight potential mechanisms for maintaining microsatellite distribution, such as selective forces and mismatch repair systems. CONCLUSIONS: Our data could be beneficial for the studies of genome evolution and microsatellite DNA evolutionary dynamics, and facilitate the exploration of microsatellites structural, function, composition mode and molecular markers development in these species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-021-07752-6.