Cargando…

Screening and identification of genes affecting grain quality and spikelet fertility during high-temperature treatment in grain filling stage of rice

BACKGROUND: Recent temperature increases due to rapid climate change have negatively affected rice yield and grain quality. Particularly, high temperatures during right after the flowering stage reduce spikelet fertility, while interfering with sugar energy transport, and cause severe damage to grai...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jae-Ryoung, Kim, Eun-Gyeong, Jang, Yoon-Hee, Kim, Kyung-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186072/
https://www.ncbi.nlm.nih.gov/pubmed/34098898
http://dx.doi.org/10.1186/s12870-021-03056-9
Descripción
Sumario:BACKGROUND: Recent temperature increases due to rapid climate change have negatively affected rice yield and grain quality. Particularly, high temperatures during right after the flowering stage reduce spikelet fertility, while interfering with sugar energy transport, and cause severe damage to grain quality by forming chalkiness grains. The effect of high-temperature on spikelet fertility and grain quality during grain filling stage was evaluated using a double haploid line derived from another culture of F(1) by crossing Cheongcheong and Nagdong cultivars. Quantitative trait locus (QTL) mapping identifies candidate genes significantly associated with spikelet fertility and grain quality at high temperatures. RESULTS: Our analysis screened OsSFq3 that contributes to spikelet fertility and grain quality at high-temperature. OsSFq3 was fine-mapped in the region RM15749-RM15689 on chromosome 3, wherein four candidate genes related to the synthesis and decomposition of amylose, a starch component, were predicted. Four major candidate genes, including OsSFq3, and 10 different genes involved in the synthesis and decomposition of amylose and amylopectin, which are starch constituents, together with relative expression levels were analyzed. OsSFq3 was highly expressed during the initial stage of high-temperature treatment. It exhibited high homology with FLOURY ENDOSPERM 6 in Gramineae plants and is therefore expected to function similarly. CONCLUSION: The QTL, major candidate genes, and OsSFq3 identified herein could be effectively used in breeding rice varieties to improve grain quality, while tolerating high temperatures, to cope with climate changes. Furthermore, linked markers can aid in marker-assisted selection of high-quality and -yield rice varieties tolerant to high temperatures. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-021-03056-9.