Cargando…
Analysis of single-cell RNA sequencing data based on autoencoders
BACKGROUND: Single-cell RNA sequencing (scRNA-Seq) experiments are gaining ground to study the molecular processes that drive normal development as well as the onset of different pathologies. Finding an effective and efficient low-dimensional representation of the data is one of the most important s...
Autores principales: | Tangherloni, Andrea, Ricciuti, Federico, Besozzi, Daniela, Liò, Pietro, Cvejic, Ana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186186/ https://www.ncbi.nlm.nih.gov/pubmed/34103004 http://dx.doi.org/10.1186/s12859-021-04150-3 |
Ejemplares similares
-
GenHap: a novel computational method based on genetic algorithms for haplotype assembly
por: Tangherloni, Andrea, et al.
Publicado: (2019) -
Graphics processing units in bioinformatics, computational biology and systems biology
por: Nobile, Marco S, et al.
Publicado: (2017) -
Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis
por: Athanasiadis, Emmanouil I., et al.
Publicado: (2017) -
LASSIE: simulating large-scale models of biochemical systems on GPUs
por: Tangherloni, Andrea, et al.
Publicado: (2017) -
Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data
por: Carilli, Maria, et al.
Publicado: (2023)