Cargando…

Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion

The enzymatic hydrolysis of lignocellulosic polymers is generally considered the rate-limiting step to methane production in anaerobic digestion of lignocellulosic biomass. The present study aimed to investigate how the hydrolytic microbial communities of three different types of anaerobic digesters...

Descripción completa

Detalles Bibliográficos
Autores principales: Jensen, Mads Borgbjerg, de Jonge, Nadieh, Dolriis, Maja Duus, Kragelund, Caroline, Fischer, Christian Holst, Eskesen, Martin Rosenørn, Noer, Karoline, Møller, Henrik Bjarne, Ottosen, Lars Ditlev Mørck, Nielsen, Jeppe Lund, Kofoed, Michael Vedel Wegener
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186499/
https://www.ncbi.nlm.nih.gov/pubmed/34113323
http://dx.doi.org/10.3389/fmicb.2021.645174
_version_ 1783704960007929856
author Jensen, Mads Borgbjerg
de Jonge, Nadieh
Dolriis, Maja Duus
Kragelund, Caroline
Fischer, Christian Holst
Eskesen, Martin Rosenørn
Noer, Karoline
Møller, Henrik Bjarne
Ottosen, Lars Ditlev Mørck
Nielsen, Jeppe Lund
Kofoed, Michael Vedel Wegener
author_facet Jensen, Mads Borgbjerg
de Jonge, Nadieh
Dolriis, Maja Duus
Kragelund, Caroline
Fischer, Christian Holst
Eskesen, Martin Rosenørn
Noer, Karoline
Møller, Henrik Bjarne
Ottosen, Lars Ditlev Mørck
Nielsen, Jeppe Lund
Kofoed, Michael Vedel Wegener
author_sort Jensen, Mads Borgbjerg
collection PubMed
description The enzymatic hydrolysis of lignocellulosic polymers is generally considered the rate-limiting step to methane production in anaerobic digestion of lignocellulosic biomass. The present study aimed to investigate how the hydrolytic microbial communities of three different types of anaerobic digesters adapted to lignocellulose-rich wheat straw in continuous stirred tank reactors operated for 134 days. Cellulase and xylanase activities were monitored weekly using fluorescently-labeled model substrates and the enzymatic profiles were correlated with changes in microbial community compositions based on 16S rRNA gene amplicon sequencing to identify key species involved in lignocellulose degradation. The enzymatic activity profiles and microbial community changes revealed reactor-specific adaption of phylogenetically different hydrolytic communities. The enzymatic activities correlated significantly with changes in specific taxonomic groups, including representatives of Ruminiclostridium, Caldicoprobacter, Ruminofilibacter, Ruminococcaceae, Treponema, and Clostridia order MBA03, all of which have been linked to cellulolytic and xylanolytic activity in the literature. By identifying microorganisms with similar development as the cellulase and xylanase activities, the proposed correlation method constitutes a promising approach for deciphering essential cellulolytic and xylanolytic microbial groups for anaerobic digestion of lignocellulosic biomass.
format Online
Article
Text
id pubmed-8186499
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-81864992021-06-09 Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion Jensen, Mads Borgbjerg de Jonge, Nadieh Dolriis, Maja Duus Kragelund, Caroline Fischer, Christian Holst Eskesen, Martin Rosenørn Noer, Karoline Møller, Henrik Bjarne Ottosen, Lars Ditlev Mørck Nielsen, Jeppe Lund Kofoed, Michael Vedel Wegener Front Microbiol Microbiology The enzymatic hydrolysis of lignocellulosic polymers is generally considered the rate-limiting step to methane production in anaerobic digestion of lignocellulosic biomass. The present study aimed to investigate how the hydrolytic microbial communities of three different types of anaerobic digesters adapted to lignocellulose-rich wheat straw in continuous stirred tank reactors operated for 134 days. Cellulase and xylanase activities were monitored weekly using fluorescently-labeled model substrates and the enzymatic profiles were correlated with changes in microbial community compositions based on 16S rRNA gene amplicon sequencing to identify key species involved in lignocellulose degradation. The enzymatic activity profiles and microbial community changes revealed reactor-specific adaption of phylogenetically different hydrolytic communities. The enzymatic activities correlated significantly with changes in specific taxonomic groups, including representatives of Ruminiclostridium, Caldicoprobacter, Ruminofilibacter, Ruminococcaceae, Treponema, and Clostridia order MBA03, all of which have been linked to cellulolytic and xylanolytic activity in the literature. By identifying microorganisms with similar development as the cellulase and xylanase activities, the proposed correlation method constitutes a promising approach for deciphering essential cellulolytic and xylanolytic microbial groups for anaerobic digestion of lignocellulosic biomass. Frontiers Media S.A. 2021-05-25 /pmc/articles/PMC8186499/ /pubmed/34113323 http://dx.doi.org/10.3389/fmicb.2021.645174 Text en Copyright © 2021 Jensen, de Jonge, Dolriis, Kragelund, Fischer, Eskesen, Noer, Møller, Ottosen, Nielsen and Kofoed. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Jensen, Mads Borgbjerg
de Jonge, Nadieh
Dolriis, Maja Duus
Kragelund, Caroline
Fischer, Christian Holst
Eskesen, Martin Rosenørn
Noer, Karoline
Møller, Henrik Bjarne
Ottosen, Lars Ditlev Mørck
Nielsen, Jeppe Lund
Kofoed, Michael Vedel Wegener
Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion
title Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion
title_full Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion
title_fullStr Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion
title_full_unstemmed Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion
title_short Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion
title_sort cellulolytic and xylanolytic microbial communities associated with lignocellulose-rich wheat straw degradation in anaerobic digestion
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186499/
https://www.ncbi.nlm.nih.gov/pubmed/34113323
http://dx.doi.org/10.3389/fmicb.2021.645174
work_keys_str_mv AT jensenmadsborgbjerg cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT dejongenadieh cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT dolriismajaduus cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT kragelundcaroline cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT fischerchristianholst cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT eskesenmartinrosenørn cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT noerkaroline cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT møllerhenrikbjarne cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT ottosenlarsditlevmørck cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT nielsenjeppelund cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion
AT kofoedmichaelvedelwegener cellulolyticandxylanolyticmicrobialcommunitiesassociatedwithlignocelluloserichwheatstrawdegradationinanaerobicdigestion