Cargando…

Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma

BACKGROUND: Prediction of early progression in glioblastoma may provide an opportunity to personalize treatment. Simplified intravoxel incoherent motion (IVIM) MRI offers quantitative estimates of diffusion and perfusion metrics. We investigated whether these metrics, during chemoradiation, could pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Maralani, Pejman Jabehdar, Myrehaug, Sten, Mehrabian, Hatef, Chan, Aimee K.M., Wintermark, Max, Heyn, Chris, Conklin, John, Ellingson, Benjamin M., Rahimi, Saba, Lau, Angus Z, Tseng, Chia-Lin, Soliman, Hany, Detsky, Jay, Daghighi, Shadi, Keith, Julia, Munoz, David G., Das, Sunit, Atenafu, Eshetu G., Lipsman, Nir, Perry, James, Stanisz, Greg, Sahgal, Arjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186561/
https://www.ncbi.nlm.nih.gov/pubmed/33418005
http://dx.doi.org/10.1016/j.radonc.2020.12.037
_version_ 1783704967800946688
author Maralani, Pejman Jabehdar
Myrehaug, Sten
Mehrabian, Hatef
Chan, Aimee K.M.
Wintermark, Max
Heyn, Chris
Conklin, John
Ellingson, Benjamin M.
Rahimi, Saba
Lau, Angus Z
Tseng, Chia-Lin
Soliman, Hany
Detsky, Jay
Daghighi, Shadi
Keith, Julia
Munoz, David G.
Das, Sunit
Atenafu, Eshetu G.
Lipsman, Nir
Perry, James
Stanisz, Greg
Sahgal, Arjun
author_facet Maralani, Pejman Jabehdar
Myrehaug, Sten
Mehrabian, Hatef
Chan, Aimee K.M.
Wintermark, Max
Heyn, Chris
Conklin, John
Ellingson, Benjamin M.
Rahimi, Saba
Lau, Angus Z
Tseng, Chia-Lin
Soliman, Hany
Detsky, Jay
Daghighi, Shadi
Keith, Julia
Munoz, David G.
Das, Sunit
Atenafu, Eshetu G.
Lipsman, Nir
Perry, James
Stanisz, Greg
Sahgal, Arjun
author_sort Maralani, Pejman Jabehdar
collection PubMed
description BACKGROUND: Prediction of early progression in glioblastoma may provide an opportunity to personalize treatment. Simplified intravoxel incoherent motion (IVIM) MRI offers quantitative estimates of diffusion and perfusion metrics. We investigated whether these metrics, during chemoradiation, could predict treatment outcome. METHODS: 38 patients with newly diagnosed IDH-wildtype glioblastoma undergoing 6-week/30-fraction chemoradiation had standardized post-operative MRIs at baseline (radiation planning), and at the 10th and 20th fractions. Non-overlapping T1-enhancing (T1C) and non-enhancing T2-FLAIR hyperintense regions were independently segmented. Apparent diffusion coefficient (ADC(T1C), ADC(T2-FLAIR)) and perfusion fraction (f(T1C), f(T2-FLAIR)) maps were generated with simplified IVIM modelling. Parameters associated with progression before or after 6.9 months (early vs late progression, respectively), overall survival (OS) and progression-free survival (PFS) were investigated. RESULTS: Higher ADC(T2-FLAIR) at baseline [Odds Ratio (OR) = 1.06, 95% CI 1.01–1.15, p = 0.025], lower f(T2-FLAIR) at fraction 10 (OR = 2.11, 95% CI 1.04–4.27, p = 0.018), and lack of increase in ADC(T2-FLAIR) at fraction 20 compared to baseline (OR = 1.12, 95% CI 1.02–1.22, p = 0.02) were associated with early progression. Combining ADC(T2-FLAIR) at baseline, f(T2-FLAIR) at fraction 10, ECOG and MGMT promoter methylation status significantly improved AUC to 90.3% compared to a model with only ECOG and MGMT promoter methylation status (p = 0.001). Using multivariable analysis, neither IVIM metrics were associated with OS but higher f(T2-FLAIR) at fraction 10 (HR = 0.72, 95% CI 0.56–0.95, p = 0.018) was associated with longer PFS. CONCLUSION: ADC(T2-FLAIR) at baseline, its lack of increase from baseline to fraction 20, or f(T2-FLAIR) at fraction 10 significantly predicted early progression. f(T2-FLAIR) at fraction 10 was associated with PFS.
format Online
Article
Text
id pubmed-8186561
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-81865612021-06-08 Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma Maralani, Pejman Jabehdar Myrehaug, Sten Mehrabian, Hatef Chan, Aimee K.M. Wintermark, Max Heyn, Chris Conklin, John Ellingson, Benjamin M. Rahimi, Saba Lau, Angus Z Tseng, Chia-Lin Soliman, Hany Detsky, Jay Daghighi, Shadi Keith, Julia Munoz, David G. Das, Sunit Atenafu, Eshetu G. Lipsman, Nir Perry, James Stanisz, Greg Sahgal, Arjun Radiother Oncol Article BACKGROUND: Prediction of early progression in glioblastoma may provide an opportunity to personalize treatment. Simplified intravoxel incoherent motion (IVIM) MRI offers quantitative estimates of diffusion and perfusion metrics. We investigated whether these metrics, during chemoradiation, could predict treatment outcome. METHODS: 38 patients with newly diagnosed IDH-wildtype glioblastoma undergoing 6-week/30-fraction chemoradiation had standardized post-operative MRIs at baseline (radiation planning), and at the 10th and 20th fractions. Non-overlapping T1-enhancing (T1C) and non-enhancing T2-FLAIR hyperintense regions were independently segmented. Apparent diffusion coefficient (ADC(T1C), ADC(T2-FLAIR)) and perfusion fraction (f(T1C), f(T2-FLAIR)) maps were generated with simplified IVIM modelling. Parameters associated with progression before or after 6.9 months (early vs late progression, respectively), overall survival (OS) and progression-free survival (PFS) were investigated. RESULTS: Higher ADC(T2-FLAIR) at baseline [Odds Ratio (OR) = 1.06, 95% CI 1.01–1.15, p = 0.025], lower f(T2-FLAIR) at fraction 10 (OR = 2.11, 95% CI 1.04–4.27, p = 0.018), and lack of increase in ADC(T2-FLAIR) at fraction 20 compared to baseline (OR = 1.12, 95% CI 1.02–1.22, p = 0.02) were associated with early progression. Combining ADC(T2-FLAIR) at baseline, f(T2-FLAIR) at fraction 10, ECOG and MGMT promoter methylation status significantly improved AUC to 90.3% compared to a model with only ECOG and MGMT promoter methylation status (p = 0.001). Using multivariable analysis, neither IVIM metrics were associated with OS but higher f(T2-FLAIR) at fraction 10 (HR = 0.72, 95% CI 0.56–0.95, p = 0.018) was associated with longer PFS. CONCLUSION: ADC(T2-FLAIR) at baseline, its lack of increase from baseline to fraction 20, or f(T2-FLAIR) at fraction 10 significantly predicted early progression. f(T2-FLAIR) at fraction 10 was associated with PFS. 2021-01-05 2021-03 /pmc/articles/PMC8186561/ /pubmed/33418005 http://dx.doi.org/10.1016/j.radonc.2020.12.037 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Maralani, Pejman Jabehdar
Myrehaug, Sten
Mehrabian, Hatef
Chan, Aimee K.M.
Wintermark, Max
Heyn, Chris
Conklin, John
Ellingson, Benjamin M.
Rahimi, Saba
Lau, Angus Z
Tseng, Chia-Lin
Soliman, Hany
Detsky, Jay
Daghighi, Shadi
Keith, Julia
Munoz, David G.
Das, Sunit
Atenafu, Eshetu G.
Lipsman, Nir
Perry, James
Stanisz, Greg
Sahgal, Arjun
Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma
title Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma
title_full Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma
title_fullStr Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma
title_full_unstemmed Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma
title_short Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma
title_sort intravoxel incoherent motion (ivim) modeling of diffusion mri during chemoradiation predicts therapeutic response in idh wildtype glioblastoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186561/
https://www.ncbi.nlm.nih.gov/pubmed/33418005
http://dx.doi.org/10.1016/j.radonc.2020.12.037
work_keys_str_mv AT maralanipejmanjabehdar intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT myrehaugsten intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT mehrabianhatef intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT chanaimeekm intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT wintermarkmax intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT heynchris intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT conklinjohn intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT ellingsonbenjaminm intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT rahimisaba intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT lauangusz intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT tsengchialin intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT solimanhany intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT detskyjay intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT daghighishadi intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT keithjulia intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT munozdavidg intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT dassunit intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT atenafueshetug intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT lipsmannir intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT perryjames intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT staniszgreg intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma
AT sahgalarjun intravoxelincoherentmotionivimmodelingofdiffusionmriduringchemoradiationpredictstherapeuticresponseinidhwildtypeglioblastoma