Cargando…
Auxin treatment increases lifespan in Caenorhabditis elegans
The auxin-inducible degradation system (AID) has proven to be a highly versatile technology for rapid, robust and reversible depletion of proteins in multiple model systems. In recent years, AID has been adapted into the nematode Caenorhabditis elegans as a tool for conditional protein knockdown. Nu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186727/ https://www.ncbi.nlm.nih.gov/pubmed/34184729 http://dx.doi.org/10.1242/bio.058703 |
_version_ | 1783705005935558656 |
---|---|
author | Loose, Julia A. Ghazi, Arjumand |
author_facet | Loose, Julia A. Ghazi, Arjumand |
author_sort | Loose, Julia A. |
collection | PubMed |
description | The auxin-inducible degradation system (AID) has proven to be a highly versatile technology for rapid, robust and reversible depletion of proteins in multiple model systems. In recent years, AID has been adapted into the nematode Caenorhabditis elegans as a tool for conditional protein knockdown. Numerous transgenic strains have been created that, upon auxin exposure, undergo protein inactivation in the worm germline or somatic tissues, both during development and in young adults. Since longevity assays often involve long-term gene- and protein-manipulation, the facility for spatiotemporally precise and extended protein removal makes AID a potentially highly valuable tool for aging biology. However, whether auxins themselves impact worm longevity has not been directly addressed. Here, we show that prolonged exposure to indole 3-acetic acid (IAA), the auxin used in worm AID studies, extends lifespan. We also report that two transgenic strains expressing Arabidopsis proteins that are key components of the AID platform are longer lived than wild-type animals. Together, our results highlight the necessity for exercising caution while utilizing AID for longevity studies and in interpreting the resulting data. This article has an associated First Person interview with the first author of the paper. |
format | Online Article Text |
id | pubmed-8186727 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-81867272021-06-09 Auxin treatment increases lifespan in Caenorhabditis elegans Loose, Julia A. Ghazi, Arjumand Biol Open Research Article The auxin-inducible degradation system (AID) has proven to be a highly versatile technology for rapid, robust and reversible depletion of proteins in multiple model systems. In recent years, AID has been adapted into the nematode Caenorhabditis elegans as a tool for conditional protein knockdown. Numerous transgenic strains have been created that, upon auxin exposure, undergo protein inactivation in the worm germline or somatic tissues, both during development and in young adults. Since longevity assays often involve long-term gene- and protein-manipulation, the facility for spatiotemporally precise and extended protein removal makes AID a potentially highly valuable tool for aging biology. However, whether auxins themselves impact worm longevity has not been directly addressed. Here, we show that prolonged exposure to indole 3-acetic acid (IAA), the auxin used in worm AID studies, extends lifespan. We also report that two transgenic strains expressing Arabidopsis proteins that are key components of the AID platform are longer lived than wild-type animals. Together, our results highlight the necessity for exercising caution while utilizing AID for longevity studies and in interpreting the resulting data. This article has an associated First Person interview with the first author of the paper. The Company of Biologists Ltd 2021-05-07 /pmc/articles/PMC8186727/ /pubmed/34184729 http://dx.doi.org/10.1242/bio.058703 Text en © 2021. Published by The Company of Biologists Ltd https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Loose, Julia A. Ghazi, Arjumand Auxin treatment increases lifespan in Caenorhabditis elegans |
title | Auxin treatment increases lifespan in Caenorhabditis elegans |
title_full | Auxin treatment increases lifespan in Caenorhabditis elegans |
title_fullStr | Auxin treatment increases lifespan in Caenorhabditis elegans |
title_full_unstemmed | Auxin treatment increases lifespan in Caenorhabditis elegans |
title_short | Auxin treatment increases lifespan in Caenorhabditis elegans |
title_sort | auxin treatment increases lifespan in caenorhabditis elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186727/ https://www.ncbi.nlm.nih.gov/pubmed/34184729 http://dx.doi.org/10.1242/bio.058703 |
work_keys_str_mv | AT loosejuliaa auxintreatmentincreaseslifespanincaenorhabditiselegans AT ghaziarjumand auxintreatmentincreaseslifespanincaenorhabditiselegans |