Cargando…

Severe COVID-19 pneumonia: Perfusion analysis in correlation with pulmonary embolism and vessel enlargement using dual-energy CT data

BACKGROUND: Gas exchange in COVID-19 pneumonia is impaired and vessel obstruction has been suspected to cause ventilation-perfusion mismatch. Dual-energy CT (DECT) can depict pulmonary perfusion by regional assessment of iodine uptake. OBJECTIVE: The purpose of this study was the analysis of pulmona...

Descripción completa

Detalles Bibliográficos
Autores principales: Poschenrieder, Florian, Meiler, Stefanie, Lubnow, Matthias, Zeman, Florian, Rennert, Janine, Scharf, Gregor, Schaible, Jan, Stroszczynski, Christian, Pfeifer, Michael, Hamer, Okka W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186798/
https://www.ncbi.nlm.nih.gov/pubmed/34101734
http://dx.doi.org/10.1371/journal.pone.0252478
Descripción
Sumario:BACKGROUND: Gas exchange in COVID-19 pneumonia is impaired and vessel obstruction has been suspected to cause ventilation-perfusion mismatch. Dual-energy CT (DECT) can depict pulmonary perfusion by regional assessment of iodine uptake. OBJECTIVE: The purpose of this study was the analysis of pulmonary perfusion using dual-energy CT in a cohort of 27 consecutive patients with severe COVID-19 pneumonia. METHOD: We retrospectively analyzed pulmonary perfusion with DECT in 27 consecutive patients (mean age 57 years, range 21–73; 19 men and 8 women) with severe COVID-19 pneumonia. Iodine uptake (IU) in regions-of-interest placed into normally aerated lung, ground-glass opacifications (GGO) and consolidations was measured using a dedicated postprocessing software. Vessel enlargement (VE) within opacifications and presence of pulmonary embolism (PE) was assessed by subjective analysis. Linear mixed models were used for statistical analyses. RESULTS: Compared to normally aerated lung 106/151 (70.2%) opacifications without upstream PE demonstrated an increased IU, 9/151 (6.0%) an equal IU and 36/151 (23.8%) a decreased IU. The estimated mean iodine uptake (EMIU) in opacifications without upstream PE (GGO 1.77 mg/mL; 95%-CI: 1.52–2.02; p = 0.011, consolidations 1.82 mg/mL; 95%-CI: 1.56–2.08, p = 0.006) was significantly higher compared to normal lung (1.22 mg/mL; 95%-CI: 0.95–1.49). In case of upstream PE, EMIU of opacifications (combined GGO and consolidations) was significantly decreased compared to normal lung (0.52 mg/mL; 95%-CI: -0.07–1.12; p = 0.043). The presence of VE in opacifications correlated significantly with iodine uptake (p<0.001). CONCLUSIONS: DECT revealed the opacifications in a subset of patients with severe COVID-19 pneumonia to be perfused non-uniformly with some being hypo- and others being hyperperfused. Mean iodine uptake in opacifications (both ground-glass and consolidation) was higher compared to normally aerated lung except for areas with upstream pulmonary embolism. Vessel enlargement correlated with iodine uptake: In summary, in a cohort of 27 consecutive patients with severe COVID-19 pneumonia, dual-energy CT demonstrated a wide range of iodine uptake in pulmonary ground-glass opacifications and consolidations as a surrogate marker for hypo- and hyperperfusion compared to normally aerated lung. Applying DECT to determine which pathophysiology is predominant might help to tailor therapy to the individual patient´s needs.