Cargando…
Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease
AIM: Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers. METHODS: This is an observational cohort study of patients...
Autores principales: | Chan, Lili, Nadkarni, Girish N., Fleming, Fergus, McCullough, James R., Connolly, Patricia, Mosoyan, Gohar, El Salem, Fadi, Kattan, Michael W., Vassalotti, Joseph A., Murphy, Barbara, Donovan, Michael J., Coca, Steven G., Damrauer, Scott M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187208/ https://www.ncbi.nlm.nih.gov/pubmed/33797560 http://dx.doi.org/10.1007/s00125-021-05444-0 |
Ejemplares similares
-
Analytical validation of a multi-biomarker algorithmic test for prediction of progressive kidney function decline in patients with early-stage kidney disease
por: Connolly, Patricia, et al.
Publicado: (2021) -
Real World Evidence and Clinical Utility of KidneyIntelX on Patients
With Early-Stage Diabetic Kidney Disease: Interim Results on Decision Impact and
Outcomes
por: Tokita, Joji, et al.
Publicado: (2022) -
Machine Learning Enables Single-Score Assessment of MASLD Presence and Severity
por: Chen, Robert, et al.
Publicado: (2023) -
Higher Symptom Frequency and Severity After the Long Interdialytic Interval in Patients on Maintenance Intermittent Hemodialysis
por: Chauhan, Kinsuk, et al.
Publicado: (2022) -
Derivation and Validation of Genome‐Wide Polygenic Score for Ischemic Heart Failure
por: Paranjpe, Ishan, et al.
Publicado: (2021)