Cargando…
MLatom 2: An Integrative Platform for Atomistic Machine Learning
Atomistic machine learning (AML) simulations are used in chemistry at an ever-increasing pace. A large number of AML models has been developed, but their implementations are scattered among different packages, each with its own conventions for input and output. Thus, here we give an overview of our...
Autores principales: | Dral, Pavlo O., Ge, Fuchun, Xue, Bao-Xin, Hou, Yi-Fan, Pinheiro, Max, Huang, Jianxing, Barbatti, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187220/ https://www.ncbi.nlm.nih.gov/pubmed/34101036 http://dx.doi.org/10.1007/s41061-021-00339-5 |
Ejemplares similares
-
Choosing the right molecular machine learning potential
por: Pinheiro, Max, et al.
Publicado: (2021) -
Machine Learning for Absorption Cross Sections
por: Xue, Bao-Xin, et al.
Publicado: (2020) -
Nonadiabatic Excited-State Dynamics with Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2018) -
WS22 database, Wigner Sampling and geometry interpolation for configurationally diverse molecular datasets
por: Pinheiro Jr, Max, et al.
Publicado: (2023) -
Interpretable Machine Learning of Two‐Photon Absorption
por: Su, Yuming, et al.
Publicado: (2023)