Cargando…
High precision implicit function learning for forecasting supercapacitor state of health based on Gaussian process regression
State of health (SOH) prediction of supercapacitors aims to provide reliable lifetime control and avoid system failure. Gaussian process regression (GPR) has emerged for SOH prediction because of its capability of capturing nonlinear relationships between features, and tracking SOH attenuations effe...
Autores principales: | Ren, Jiahao, Cai, Junfei, Li, Jinjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187390/ https://www.ncbi.nlm.nih.gov/pubmed/34103569 http://dx.doi.org/10.1038/s41598-021-91241-z |
Ejemplares similares
-
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Forecast and evaluation of COVID-19 spreading in USA with reduced-space Gaussian process regression
por: Arias Velásquez, Ricardo Manuel, et al.
Publicado: (2020) -
Gaussian process forecasts Pseudogymnoascus destructans will cover coterminous United States by 2030
por: Wiens, Ashton M., et al.
Publicado: (2022) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
Enhanced Gaussian process regression-based forecasting model for COVID-19 outbreak and significance of IoT for its detection
por: Ketu, Shwet, et al.
Publicado: (2020)