Cargando…
Identifying and characterizing high-risk clusters in a heterogeneous ICU population with deep embedded clustering
Critically ill patients constitute a highly heterogeneous population, with seemingly distinct patients having similar outcomes, and patients with the same admission diagnosis having opposite clinical trajectories. We aimed to develop a machine learning methodology that identifies and provides better...
Autores principales: | Castela Forte, José, Yeshmagambetova, Galiya, van der Grinten, Maureen L., Hiemstra, Bart, Kaufmann, Thomas, Eck, Ruben J., Keus, Frederik, Epema, Anne H., Wiering, Marco A., van der Horst, Iwan C. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187398/ https://www.ncbi.nlm.nih.gov/pubmed/34103544 http://dx.doi.org/10.1038/s41598-021-91297-x |
Ejemplares similares
-
A Bayesian Network Analysis of the Diagnostic Process and its Accuracy to Determine How Clinicians Estimate Cardiac Function in Critically Ill Patients: Prospective Observational Cohort Study
por: Kaufmann, Thomas, et al.
Publicado: (2019) -
Comparison of Machine Learning Models Including Preoperative, Intraoperative, and Postoperative Data and Mortality After Cardiac Surgery
por: Castela Forte, José, et al.
Publicado: (2022) -
Clinical examination for diagnosing circulatory shock
por: Hiemstra, Bart, et al.
Publicado: (2017) -
Deep Learning for Identification of Acute Illness and Facial Cues of Illness
por: Forte, Castela, et al.
Publicado: (2021) -
Clinical examination findings as predictors of acute kidney injury in critically ill patients
por: Wiersema, Renske, et al.
Publicado: (2019)