Cargando…

MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification

To fully utilize the advances in omics technologies and achieve a more comprehensive understanding of human diseases, novel computational methods are required for integrative analysis of multiple types of omics data. Here, we present a novel multi-omics integrative method named Multi-Omics Graph cOn...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tongxin, Shao, Wei, Huang, Zhi, Tang, Haixu, Zhang, Jie, Ding, Zhengming, Huang, Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187432/
https://www.ncbi.nlm.nih.gov/pubmed/34103512
http://dx.doi.org/10.1038/s41467-021-23774-w
Descripción
Sumario:To fully utilize the advances in omics technologies and achieve a more comprehensive understanding of human diseases, novel computational methods are required for integrative analysis of multiple types of omics data. Here, we present a novel multi-omics integrative method named Multi-Omics Graph cOnvolutional NETworks (MOGONET) for biomedical classification. MOGONET jointly explores omics-specific learning and cross-omics correlation learning for effective multi-omics data classification. We demonstrate that MOGONET outperforms other state-of-the-art supervised multi-omics integrative analysis approaches from different biomedical classification applications using mRNA expression data, DNA methylation data, and microRNA expression data. Furthermore, MOGONET can identify important biomarkers from different omics data types related to the investigated biomedical problems.