Cargando…
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
To fully utilize the advances in omics technologies and achieve a more comprehensive understanding of human diseases, novel computational methods are required for integrative analysis of multiple types of omics data. Here, we present a novel multi-omics integrative method named Multi-Omics Graph cOn...
Autores principales: | Wang, Tongxin, Shao, Wei, Huang, Zhi, Tang, Haixu, Zhang, Jie, Ding, Zhengming, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187432/ https://www.ncbi.nlm.nih.gov/pubmed/34103512 http://dx.doi.org/10.1038/s41467-021-23774-w |
Ejemplares similares
-
Deep learning on graphs for multi-omics classification of COPD
por: Zhuang, Yonghua, et al.
Publicado: (2023) -
FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction
por: Wen, Gang, et al.
Publicado: (2023) -
A universal framework for single-cell multi-omics data integration with graph convolutional networks
por: Gao, Hongli, et al.
Publicado: (2023) -
Multi-label classification of fundus images based on graph convolutional network
por: Cheng, Yinlin, et al.
Publicado: (2021) -
An Invertible Dynamic Graph Convolutional Network for Multi-Center ASD Classification
por: Chen, Yueying, et al.
Publicado: (2022)