Cargando…
Rheology-Informed Neural Networks (RhINNs) for forward and inverse metamodelling of complex fluids
Reliable and accurate prediction of complex fluids’ response under flow is of great interest across many disciplines, from biological systems to virtually all soft materials. The challenge is to solve non-trivial time and rate dependent constitutive equations to describe these structured fluids unde...
Autores principales: | Mahmoudabadbozchelou, Mohammadamin, Jamali, Safa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187644/ https://www.ncbi.nlm.nih.gov/pubmed/34103602 http://dx.doi.org/10.1038/s41598-021-91518-3 |
Ejemplares similares
-
Digital rheometer twins: Learning the hidden rheology of complex fluids through rheology-informed graph neural networks
por: Mahmoudabadbozchelou, Mohammadamin, et al.
Publicado: (2022) -
The simulation metamodel
por: Friedman, Linda Weiser
Publicado: (1996) -
Metamodelling of a two-population spiking neural network
por: Skaar, Jan-Eirik W., et al.
Publicado: (2023) -
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
por: Pietrenko-Dabrowska, Anna, et al.
Publicado: (2021) -
Metamodelling for software engineering
por: Gonzalez Perez, Cesar, et al.
Publicado: (2008)