Cargando…
Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach
Public healthcare has a history of cautious adoption for artificial intelligence (AI) systems. The rapid growth of data collection and linking capabilities combined with the increasing diversity of the data-driven AI techniques, including machine learning (ML), has brought both ubiquitous opportunit...
Autores principales: | Kolyshkina, Inna, Simoff, Simeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187858/ https://www.ncbi.nlm.nih.gov/pubmed/34124652 http://dx.doi.org/10.3389/fdata.2021.660206 |
Ejemplares similares
-
Editorial: Human-Interpretable Machine Learning
por: Tolomei, Gabriele, et al.
Publicado: (2022) -
Editorial: ML and AI Safety, Effectiveness and Explainability in Healthcare
por: Benrimoh, David, et al.
Publicado: (2021) -
The Agile Deployment of Machine Learning Models in Healthcare
por: Jackson, Stuart, et al.
Publicado: (2019) -
A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth
por: Coggan, Helena, et al.
Publicado: (2022) -
The determinants of investment fraud: A machine learning and artificial intelligence approach
por: Lokanan, Mark
Publicado: (2022)