Cargando…

Dynamics of nonspherical bubble in compressible liquid under the coupling effect of ultrasound and electrostatic field

A model for a nonspherical bubble in a compressible liquid under the coupling effect of ultrasound and electrostatic field was developed in this study. The following assumptions are made: (1) the bubble undergoes adiabatic oscillation; (2) the gravity of the liquid is negligible; (3) the bubble is i...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Jin-Jie, Yang, Ri-Fu, Lu, Hai-Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187881/
https://www.ncbi.nlm.nih.gov/pubmed/33360367
http://dx.doi.org/10.1016/j.ultsonch.2020.105371
Descripción
Sumario:A model for a nonspherical bubble in a compressible liquid under the coupling effect of ultrasound and electrostatic field was developed in this study. The following assumptions are made: (1) the bubble undergoes adiabatic oscillation; (2) the gravity of the liquid is negligible; (3) the bubble is insulating. If the speed of sound approaches infinity ([Formula: see text]), the equation set is reduced to the equation set for an incompressible liquid. We found that, under ultrasonic irradiation coupled with electric stress, a nonspherical bubble cannot oscillate steadily in the liquid. The bubble is bound to collapse during several cycles. The presence of electric stress reduces the surface tension at the bubble wall, which produces a larger maximum bubble-radius during the rarefaction cycle and a smaller minimum bubble-radius during the compression cycle. Consequently, during the collapse, both the gas pressure and the temperature in the bubble center increase substantially, if the bubble is exposed to both ultrasound and electrostatic field instead of ultrasound alone. In addition, the cavitation threshold of the bubble within an electrostatic field decreases significantly, compared to the bubble without an electrostatic field. In general, bubble cavitation occurs more easily and violently in the liquid after the introduction of an electrostatic field.