Cargando…
Toward Patient-Specific Prediction of Ablation Strategies for Atrial Fibrillation Using Deep Learning
Atrial fibrillation (AF) is a common cardiac arrhythmia that affects 1% of the population worldwide and is associated with high levels of morbidity and mortality. Catheter ablation (CA) has become one of the first line treatments for AF, but its success rates are suboptimal, especially in the case o...
Autores principales: | Muffoletto, Marica, Qureshi, Ahmed, Zeidan, Aya, Muizniece, Laila, Fu, Xiao, Zhao, Jichao, Roy, Aditi, Bates, Paul A., Aslanidi, Oleg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187921/ https://www.ncbi.nlm.nih.gov/pubmed/34122144 http://dx.doi.org/10.3389/fphys.2021.674106 |
Ejemplares similares
-
Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Muizniece, Laila, et al.
Publicado: (2021) -
Corrigendum: Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Muizniece, Laila, et al.
Publicado: (2021) -
Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation
por: Ogbomo-Harmitt, Shaheim, et al.
Publicado: (2023) -
Can artificial intelligence prediction of successful atrial fibrillation catheter ablation therapy be interpretable?
por: Ogbomo-Harmitt, S, et al.
Publicado: (2022) -
Image-Based Computational Evaluation of the Effects of Atrial Wall Thickness and Fibrosis on Re-entrant Drivers for Atrial Fibrillation
por: Roy, Aditi, et al.
Publicado: (2018)