Cargando…
The plate-to-rod transition in trabecular bone loss is elusive
Changes in trabecular micro-architecture are key to our understanding of osteoporosis. Previous work focusing on structure model index (SMI) measurements have concluded that disease progression entails a shift from plates to rods in trabecular bone, but SMI is heavily biased by bone volume fraction....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188009/ https://www.ncbi.nlm.nih.gov/pubmed/34113446 http://dx.doi.org/10.1098/rsos.201401 |
_version_ | 1783705254063243264 |
---|---|
author | Felder, A. A. Monzem, S. De Souza, R. Javaheri, B. Mills, D. Boyde, A. Doube, M. |
author_facet | Felder, A. A. Monzem, S. De Souza, R. Javaheri, B. Mills, D. Boyde, A. Doube, M. |
author_sort | Felder, A. A. |
collection | PubMed |
description | Changes in trabecular micro-architecture are key to our understanding of osteoporosis. Previous work focusing on structure model index (SMI) measurements have concluded that disease progression entails a shift from plates to rods in trabecular bone, but SMI is heavily biased by bone volume fraction. As an alternative to SMI, we proposed the ellipsoid factor (EF) as a continuous measure of local trabecular shape between plate-like and rod-like extremes. We investigated the relationship between EF distributions, SMI and bone volume fraction of the trabecular geometry in a murine model of disuse osteoporosis as well as from human vertebrae of differing bone volume fraction. We observed a moderate shift in EF median (at later disease stages in mouse tibia) and EF mode (in the vertebral samples with low bone volume fraction) towards a more rod-like geometry, but not in EF maximum and minimum. These results support the notion that the plate to rod transition does not coincide with the onset of bone loss and is considerably more moderate, when it does occur, than SMI suggests. A variety of local shapes not straightforward to categorize as rod or plate exist in all our trabecular bone samples. |
format | Online Article Text |
id | pubmed-8188009 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-81880092021-06-09 The plate-to-rod transition in trabecular bone loss is elusive Felder, A. A. Monzem, S. De Souza, R. Javaheri, B. Mills, D. Boyde, A. Doube, M. R Soc Open Sci Organismal and Evolutionary Biology Changes in trabecular micro-architecture are key to our understanding of osteoporosis. Previous work focusing on structure model index (SMI) measurements have concluded that disease progression entails a shift from plates to rods in trabecular bone, but SMI is heavily biased by bone volume fraction. As an alternative to SMI, we proposed the ellipsoid factor (EF) as a continuous measure of local trabecular shape between plate-like and rod-like extremes. We investigated the relationship between EF distributions, SMI and bone volume fraction of the trabecular geometry in a murine model of disuse osteoporosis as well as from human vertebrae of differing bone volume fraction. We observed a moderate shift in EF median (at later disease stages in mouse tibia) and EF mode (in the vertebral samples with low bone volume fraction) towards a more rod-like geometry, but not in EF maximum and minimum. These results support the notion that the plate to rod transition does not coincide with the onset of bone loss and is considerably more moderate, when it does occur, than SMI suggests. A variety of local shapes not straightforward to categorize as rod or plate exist in all our trabecular bone samples. The Royal Society 2021-06-09 /pmc/articles/PMC8188009/ /pubmed/34113446 http://dx.doi.org/10.1098/rsos.201401 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Organismal and Evolutionary Biology Felder, A. A. Monzem, S. De Souza, R. Javaheri, B. Mills, D. Boyde, A. Doube, M. The plate-to-rod transition in trabecular bone loss is elusive |
title | The plate-to-rod transition in trabecular bone loss is elusive |
title_full | The plate-to-rod transition in trabecular bone loss is elusive |
title_fullStr | The plate-to-rod transition in trabecular bone loss is elusive |
title_full_unstemmed | The plate-to-rod transition in trabecular bone loss is elusive |
title_short | The plate-to-rod transition in trabecular bone loss is elusive |
title_sort | plate-to-rod transition in trabecular bone loss is elusive |
topic | Organismal and Evolutionary Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188009/ https://www.ncbi.nlm.nih.gov/pubmed/34113446 http://dx.doi.org/10.1098/rsos.201401 |
work_keys_str_mv | AT felderaa theplatetorodtransitionintrabecularbonelossiselusive AT monzems theplatetorodtransitionintrabecularbonelossiselusive AT desouzar theplatetorodtransitionintrabecularbonelossiselusive AT javaherib theplatetorodtransitionintrabecularbonelossiselusive AT millsd theplatetorodtransitionintrabecularbonelossiselusive AT boydea theplatetorodtransitionintrabecularbonelossiselusive AT doubem theplatetorodtransitionintrabecularbonelossiselusive AT felderaa platetorodtransitionintrabecularbonelossiselusive AT monzems platetorodtransitionintrabecularbonelossiselusive AT desouzar platetorodtransitionintrabecularbonelossiselusive AT javaherib platetorodtransitionintrabecularbonelossiselusive AT millsd platetorodtransitionintrabecularbonelossiselusive AT boydea platetorodtransitionintrabecularbonelossiselusive AT doubem platetorodtransitionintrabecularbonelossiselusive |