Cargando…
Classification and discrimination of real and fake blood based on photoacoustic spectroscopy combined with particle swarm optimized wavelet neural networks
In this work, photoacoustic spectroscopy was employed to distinguish real blood from fake blood rapidly, accurately, and recoverably. To achieve this goal, a photoacoustic detection system for blood was established in the forward mode. In the experiments, four kinds of animal blood and two kinds of...
Autores principales: | Ren, Zhong, Liu, Tao, Liu, Guodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188063/ https://www.ncbi.nlm.nih.gov/pubmed/34141580 http://dx.doi.org/10.1016/j.pacs.2021.100278 |
Ejemplares similares
-
Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization
por: Zhang, Yudong, et al.
Publicado: (2011) -
Chaotic Particle Swarm Optimization with Mutation for Classification
por: Assarzadeh, Zahra, et al.
Publicado: (2015) -
Qualitative and Quantitative Assessments of Apple Quality Using Vis Spectroscopy Combined with Improved Particle-Swarm-Optimized Neural Networks
por: Peng, Wenping, et al.
Publicado: (2023) -
A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification
por: Li, Guixiang, et al.
Publicado: (2021) -
Swarming morlet wavelet neural network procedures for the mathematical robot system
por: Singkibud, Peerapongpat, et al.
Publicado: (2022)