Cargando…
Data processing workflow for large-scale immune monitoring studies by mass cytometry
Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corr...
Autores principales: | Rybakowska, Paulina, Van Gassen, Sofie, Quintelier, Katrien, Saeys, Yvan, Alarcón-Riquelme, Marta E., Marañón, Concepción |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188119/ https://www.ncbi.nlm.nih.gov/pubmed/34141137 http://dx.doi.org/10.1016/j.csbj.2021.05.032 |
Ejemplares similares
-
Protocol for large scale whole blood immune monitoring by mass cytometry and Cyto Quality Pipeline
por: Rybakowska, Paulina, et al.
Publicado: (2022) -
PeacoQC: Peak‐based selection of high quality cytometry data
por: Emmaneel, Annelies, et al.
Publicado: (2021) -
Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry
por: Rybakowska, Paulina, et al.
Publicado: (2020) -
Challenges in translational machine learning
por: Couckuyt, Artuur, et al.
Publicado: (2022) -
CytoNorm: A Normalization Algorithm for Cytometry Data
por: Van Gassen, Sofie, et al.
Publicado: (2019)