Cargando…

AIDeveloper: Deep Learning Image Classification in Life Science and Beyond

Artificial intelligence (AI)‐based image analysis has increased drastically in recent years. However, all applications use individual solutions, highly specialized for a particular task. Here, an easy‐to‐use, adaptable, and open source software, called AIDeveloper (AID) to train neural nets (NN) for...

Descripción completa

Detalles Bibliográficos
Autores principales: Kräter, Martin, Abuhattum, Shada, Soteriou, Despina, Jacobi, Angela, Krüger, Thomas, Guck, Jochen, Herbig, Maik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188199/
https://www.ncbi.nlm.nih.gov/pubmed/34105281
http://dx.doi.org/10.1002/advs.202003743
Descripción
Sumario:Artificial intelligence (AI)‐based image analysis has increased drastically in recent years. However, all applications use individual solutions, highly specialized for a particular task. Here, an easy‐to‐use, adaptable, and open source software, called AIDeveloper (AID) to train neural nets (NN) for image classification without the need for programming is presented. AID provides a variety of NN‐architectures, allowing to apply trained models on new data, obtain performance metrics, and export final models to different formats. AID is benchmarked on large image datasets (CIFAR‐10 and Fashion‐MNIST). Furthermore, models are trained to distinguish areas of differentiated stem cells in images of cell culture. A conventional blood cell count and a blood count obtained using an NN are compared, trained on >1.2 million images, and demonstrated how AID can be used for label‐free classification of B‐ and T‐cells. All models are generated by non‐programmers on generic computers, allowing for an interdisciplinary use.