Cargando…

Ether-linked porphyrin covalent organic framework with broadband optical switch

It is still a challenge to design and synthesize novel switchable optical materials with ultrafast nonlinear optical (NLO) response in a broad spectral range. These materials have exhibited great application potential in many high-technology fields such as biological imaging, chemical sensors, optic...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhiwei, Zhang, Bin, Huang, Yuelin, Song, Yi, Dong, Ningning, Wang, Jun, Chen, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188477/
https://www.ncbi.nlm.nih.gov/pubmed/34142038
http://dx.doi.org/10.1016/j.isci.2021.102526
Descripción
Sumario:It is still a challenge to design and synthesize novel switchable optical materials with ultrafast nonlinear optical (NLO) response in a broad spectral range. These materials have exhibited great application potential in many high-technology fields such as biological imaging, chemical sensors, optical data storage, laser protection, and controllable intelligent and optoelectronic devices. By using porphyrins with highly delocalized 18 π-electron conjugated system as functional building blocks, the first ether-linked porphyrin covalent organic framework materials (COF-Pors) with highly ordered lattice structure have been successfully synthesized. In contrast to the starting porphyrins that only exhibit reverse saturable absorption (RSA) response at 532 nm, the as-prepared COF-Pors shows large NLO effect in a broad range from visible to near infrared. Upon laser illumination, COF-Pors exhibits typical saturable absorption (SA) effect at lower incident laser energy, and RSA response at higher pulse energy.