Cargando…
Curvature-controlled delamination patterns of thin films on spherical substrates
Periodic delamination patterns in multilayer structures have exhibited extensive applications in microelectronics and optics devices. However, delamination behaviors of a closed thin shell on spherical substrates are still elusive. Herein, a unique instability mechanism of buckle delamination in a c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188561/ https://www.ncbi.nlm.nih.gov/pubmed/34151230 http://dx.doi.org/10.1016/j.isci.2021.102616 |
Sumario: | Periodic delamination patterns in multilayer structures have exhibited extensive applications in microelectronics and optics devices. However, delamination behaviors of a closed thin shell on spherical substrates are still elusive. Herein, a unique instability mechanism of buckle delamination in a closed thin film weakly bonded to spherical substrates is studied by experiments, simulations, and theoretical analyses. The system of an Al film depositing on polystyrene spheres subjected to thermal mismatch strain is used for demonstration. Unlike traditional phenomena of wrinkling and wrinkle-induced delamination under increasing misfit strain, the weak adhesion between the core and shell results in a periodic pattern of delaminated hexagonal dimples that emerges directly from the smooth sphere configuration, before which no wrinkling occurs. Both substrate curvature and interfacial adhesion are revealed to control the dimple size and delamination width. These findings open a new venue for manifesting new controllable features for surface microfabrication. |
---|