Cargando…
Accelerating high-throughput virtual screening through molecular pool-based active learning
Structure-based virtual screening is an important tool in early stage drug discovery that scores the interactions between a target protein and candidate ligands. As virtual libraries continue to grow (in excess of 10(8) molecules), so too do the resources necessary to conduct exhaustive virtual scre...
Autores principales: | Graff, David E., Shakhnovich, Eugene I., Coley, Connor W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188596/ https://www.ncbi.nlm.nih.gov/pubmed/34168840 http://dx.doi.org/10.1039/d0sc06805e |
Ejemplares similares
-
Machine learning accelerated high-throughput screening of zeolites for the selective adsorption of xylene isomers
por: Hewitt, Daniel, et al.
Publicado: (2022) -
Antiviral nanoparticle ligands identified with datamining and high-throughput virtual screening
por: Booker, Edward Peter, et al.
Publicado: (2021) -
Nanoscale, automated, high throughput synthesis and screening for the accelerated discovery of protein modifiers
por: Gao, Kai, et al.
Publicado: (2021) -
High-throughput virtual screening for organic electronics: a comparative study of alternative strategies
por: Omar, Ömer H., et al.
Publicado: (2021) -
Combining machine learning and quantum chemical calculations for high-throughput virtual screening of thermally activated delayed fluorescence molecular materials: the impact of selection strategy and structural mutations
por: Tu, Chunyun, et al.
Publicado: (2022)