Cargando…
A Machine Learning Approach to the Interpretation of Cardiopulmonary Exercise Tests: Development and Validation
OBJECTIVE: At present, there is no consensus on the best strategy for interpreting the cardiopulmonary exercise test's (CPET) results. This study is aimed at assessing the potential of using computer-aided algorithms to evaluate CPET data for identifying chronic heart failure (CHF) and chronic...
Autores principales: | Inbar, Or, Inbar, Omri, Reuveny, Ronen, Segel, Michael J., Greenspan, Hayit, Scheinowitz, Mickey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188599/ https://www.ncbi.nlm.nih.gov/pubmed/34158976 http://dx.doi.org/10.1155/2021/5516248 |
Ejemplares similares
-
Prediction of the Wingate anaerobic mechanical power outputs from a maximal incremental cardiopulmonary exercise stress test using machine-learning approach
por: Leopold, Efrat, et al.
Publicado: (2019) -
Integrative Interpretation of Cardiopulmonary Exercise Tests for Cardiovascular Outcome Prediction: A Machine Learning Approach
por: Cauwenberghs, Nicholas, et al.
Publicado: (2023) -
Software for interpreting cardiopulmonary exercise tests
por: Ross, Robert M, et al.
Publicado: (2007) -
A computational predictor of the anaerobic mechanical power outputs from a clinical exercise stress test
por: Leopold, Efrat, et al.
Publicado: (2023) -
Cardiopulmonary Exercise Test: Background, Applicability and
Interpretation
por: Herdy, Artur Haddad, et al.
Publicado: (2016)