Cargando…
LncRNA TP73-AS1 promotes oxidized low-density lipoprotein-induced apoptosis of endothelial cells in atherosclerosis by targeting the miR-654-3p/AKT3 axis
BACKGROUND: Although lncRNA TP73-AS1 has been shown to play important roles in various human diseases, its function in atherosclerosis (AS) remains unclear. METHODS: Human aortic endothelial cells (HAECs) were treated with 50 μg/ml oxidized low-density lipoprotein (ox-LDL) to establish an atheroscle...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188714/ https://www.ncbi.nlm.nih.gov/pubmed/34103010 http://dx.doi.org/10.1186/s11658-021-00264-x |
Sumario: | BACKGROUND: Although lncRNA TP73-AS1 has been shown to play important roles in various human diseases, its function in atherosclerosis (AS) remains unclear. METHODS: Human aortic endothelial cells (HAECs) were treated with 50 μg/ml oxidized low-density lipoprotein (ox-LDL) to establish an atherosclerotic cell model. The expression of TP73-AS1, miR-654-3p and AKT3 was detected by qRT-PCR. Cell functions were evaluated CCK-8 assay and flow cytometry. The protein levels of apoptosis-related proteins were evaluated by western blot. The binding relationship among TP73-AS1, miR-654-3p and AKT3 was determined by bioinformatics analysis and luciferase reporter assay. RESULTS: TP73-AS1 was upregulated and miR-654-3p was downregulated in ox-LDL treated HAECs. TP73-AS1 silencing and miR-654-3p mimics decreased the viability and inhibited apoptosis of ox-LDL treated HAECs, decreased the expression levels of c-caspase-9, c-caspase-3 and Bax, and increased Bcl-2 expression. In addition, miR-654-3p inhibitor significantly reversed the inhibitory effects of si-TP73-AS1 on cell viability and apoptosis. TP73-AS1 could positively regulate AKT3 through directly sponging miR-654-3p. CONCLUSION: TP73-AS1 promoted apoptosis of ox-LDL stimulated endothelial cells by targeting the miR-654-3p/AKT3 axis, suggesting that TP73-AS1 might be a potential target for AS treatment. |
---|