Cargando…
Artificial Intelligence Can Effectively Predict Early Hematoma Expansion of Intracerebral Hemorrhage Analyzing Noncontrast Computed Tomography Image
This study aims to develop and validate an artificial intelligence model based on deep learning to predict early hematoma enlargement (HE) in patients with intracerebral hemorrhage. A total of 1,899 noncontrast computed tomography (NCCT) images of cerebral hemorrhage patients were retrospectively an...
Autores principales: | Teng, Linyang, Ren, Qianwei, Zhang, Pingye, Wu, Zhenzhou, Guo, Wei, Ren, Tianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188896/ https://www.ncbi.nlm.nih.gov/pubmed/34122038 http://dx.doi.org/10.3389/fnagi.2021.632138 |
Ejemplares similares
-
Noncontrast Computed Tomography Markers as Predictors of Revised Hematoma Expansion in Acute Intracerebral Hemorrhage
por: Yang, Wen‐Song, et al.
Publicado: (2021) -
Heterogeneity Signs on Noncontrast Computed Tomography Predict Hematoma Expansion after Intracerebral Hemorrhage: A Meta-Analysis
por: Zhang, Danfeng, et al.
Publicado: (2018) -
Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage
por: Song, Zuhua, et al.
Publicado: (2021) -
Noncontrast Computed Tomography Signs as Predictors of Hematoma Expansion, Clinical Outcome, and Response to Tranexamic Acid in Acute Intracerebral Hemorrhage
por: Law, Zhe Kang, et al.
Publicado: (2020) -
Inter- and Intrarater Agreement of Spot Sign and Noncontrast CT Markers for Early Intracerebral Hemorrhage Expansion
por: Nawabi, Jawed, et al.
Publicado: (2020)