Cargando…
Predictive performance of machine and statistical learning methods: Impact of data-generating processes on external validity in the “large N, small p” setting
Machine learning approaches are increasingly suggested as tools to improve prediction of clinical outcomes. We aimed to identify when machine learning methods perform better than a classical learning method. We hereto examined the impact of the data-generating process on the relative predictive accu...
Autores principales: | Austin, Peter C, Harrell, Frank E, Steyerberg, Ewout W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188999/ https://www.ncbi.nlm.nih.gov/pubmed/33848231 http://dx.doi.org/10.1177/09622802211002867 |
Ejemplares similares
-
Empirical analyses and simulations showed that different machine and statistical learning methods had differing performance for predicting blood pressure
por: Austin, Peter C., et al.
Publicado: (2022) -
Assessing Discriminative Performance at External Validation of Clinical Prediction Models
por: Nieboer, Daan, et al.
Publicado: (2016) -
Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers
por: Austin, Peter C., et al.
Publicado: (2013) -
Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable
por: Austin, Peter C, et al.
Publicado: (2012) -
External Validations of Cardiovascular Clinical Prediction Models: A Large-Scale Review of the Literature
por: Wessler, Benjamin S., et al.
Publicado: (2021)